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Abstract

Recent advances in field robotics have allowed robots to be used in challenging

unstructured environments (e.g., space, ocean, and natural disaster scenes) instead of

sending human explorers since such environments could pose a threat to human lives.

However, most field robots are not fully autonomous, relying on communication with

human operators. The inefficiencies and constraints of this dependency result in the

limited usage of field robots. Hence, enhancing robotic autonomy for unstructured envi-

ronments is necessary to enable robots to handle large-scale and time-sensitive problems

without operators.

Among such environments, the underwater domain needs immediate attention since

the hydrosphere has high impacts on our lives. Specifically, water covers 71% of Earth’s

surface and has the largest ecosystem on Earth. Unfortunately, various human activi-

ties have negatively affected the health of underwater ecosystems, which threatens our

Earth’s ecosystem as a whole. One such example is the underwater debris problem. Un-

derwater debris has already had damaging effects on the environment (e.g., damaging

wildlife habitats), and its long-term effects are predicted to be catastrophic. Existing

methods for collecting underwater debris are ineffective, and human exploration and

clean-up of the debris are prohibitively risky and cannot adapt to the scale of the prob-

lem. This shows it is necessary to deploy underwater robots, often called autonomous

underwater vehicles (AUVs), to clean up underwater debris, but the lack of robotic

autonomy discourages AUVs from being used for the task.

To bridge this gap, this thesis presents our efforts to improve robotic autonomy to

make it possible for robots to handle challenging tasks, such as marine debris cleanup,

in degraded environments. Part I introduces our efforts to improve robotic underwa-

ter object detection, focused on underwater debris, by addressing data scarcity and

unique circumstances underwater (e.g., modified shapes of objects over time, degraded

vision). In Part II, we present localization and obstacle avoidance algorithms under-

water to enable robots to explore a given environment safely and localize underwater

objects after detecting them. Even with the improved object detection and navigation

methods covered in Part I and II, robots can still struggle with autonomous behaviors
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due to the extreme challenges that unstructured environments pose in perception and

navigation. In cases such as these, human-robot collaborations are still necessary, but

robotic capabilities to establish the collaborations are under-investigated and need to

be improved. To enable such collaborations, we present algorithms for effective human-

robot collaboration in Part III. Lastly, in Part IV, we introduce open-source underwater

robotic systems to support robotic research, including the development and deployment

process of the research presented in Part I - III.

The research introduced in this thesis has been realized and tested on board physical

AUVs in various water environments. While our research has mainly focused on the

problems in the underwater environment, its robust results in this domain mean that it

can be applied to real-world problems in other domains that share similar challenges.

Thus, the research has great potential to significantly advance robotic autonomy, bring

a broader impact on human well-being, and drive robotics forward for social good.
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Chapter 1

Introduction

Recent advances in field robotics have empowered robots to survey unstructured en-

vironments, which we define as naturally formed environments (e.g., ocean, cave, and

space). These robots are capable of collecting information about unknown environments

without risking human safety or lives. For instance, NASA’s Perseverance Rover [7] has

been exploring Mars since 2020, and the Woods Hole Oceanographic Institution’s re-

motely operated vehicle (ROV) Nereus, reached a depth of 9, 990 meters in the Kermadec

Trench, northeast of New Zealand [8] in 2014. However, such robots rely on commu-

nication with human operators, often along long cables, to execute missions due to

challenges from unstructured environments. This dependency limits the robots’ usabil-

ity and poses constraints when addressing large-scale and time-sensitive problems. The

challenges posed by unstructured environments and the conceivable utility of greater

robot autonomy in such environments can be illustrated in a few selected examples.

Example 1: Underwater Debris Collection

In 2006, the United Nations Environment Programme (UNEP) [9] reported that the

ocean had 46, 000 pieces of floating plastic per square mile. Debris accumulates in the

ocean in various ways. About 80% of the debris is land-based trash (e.g., plastic bags,

beverage containers, and packaging) [10]. Ocean activities contribute to the remaining

20% of the debris, which is mostly abandoned commercial fishing gear [11]. Small water

bodies like rivers, lakes, and ponds have a similar problem. For example, an article [12]

1
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Figure 1.1: Sample images showing underwater trash made of plastic and glass at different stages
of shape and color deformation. The images show challenges posed by the underwater domain,
and the deformation makes object detection for underwater trash a significantly challenging
problem.

reported that a single resident of Minnesota, USA collected more than 1, 500 pounds

of debris falling into Lake Hiawatha from May to July 2015. Among all types of un-

derwater debris, plastic debris is one of the most damaging (Fig. 1.1). It disintegrates

into microplastics, which are too small to detect, after which it is consumed by a vast

range of organisms [13]. The report from the European Union Action to Fight Envi-

ronmental Crime (EFFACE) [14] shows that marine pollution causes a wide range of

problems including, but not limited to, environmental, health, social, financial, and eco-

nomic impacts. Hence, underwater debris is a critical issue for mankind that must be

addressed. While some efforts, including recycling and waste management regulations,

have been made to reduce the amount of underwater debris, there is still a large amount

of debris in water bodies around the world. Some devices, such as floating seabins [15]

and nets [16], passively collect floating marine debris, but these devices cannot collect

submerged debris. Also, they may collect sea animals accidentally since they cannot de-

termine whether an object is debris or not. People can both collect and identify objects,

but the time and cost to address the problem in this way would be prohibitive, to say

nothing of the potential threat toxic waste would pose to the people searching for and
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collecting the debris. Little research using autonomous robots to remove underwater

debris has been conducted despite the fact that it could be safer and more scalable than

the previously mentioned methods. This highly motivated me to develop the research

presented in Part I - IV of this thesis to address this large-scale and time-sensitive

problem with AUVs.

Example 2: Fukushima Daiichi Nuclear Disaster

The Fukashima Daiichi Nuclear incident [17] in 2011 was among the worst catastrophes

in mankind’s history. In 2011, a 15-meter tsunami following the Tōhoku earthquake

damaged the generators which powered the reactor building. The loss of power disabled

the cooling of three reactors at the Fukushima Daiichi nuclear power plant and caused a

nuclear meltdown and chemical explosions. During these incidents, uranium fuel, which

is highly radioactive, was lost. Highly trained operators from the Tokyo Electric Power

Company (TEPCO) controlled ROVs to find missing melted uranium fuel from the

reactors of the plant. Using ROVs was necessary because human exposure to the fuel

would have resulted in lethal doses of radiation in a matter of seconds [18]. Even with

such effort, the task of finding the fuel after the accident took six years. This delay was

mainly due to the fact that robotic search missions encountered many failures because

of degraded visibility caused by debris and excessive radiation, in addition to the time

spent on training the operators. If the robots were able to find the fuel autonomously

and collaborate with the operators instead of taking one-way commands, it could have

taken less time to find the fuel and lessened radioactive contamination to the ecological

system of the Earth, which can take thousands of years to decay. Similar to underwater

debris in the previous example, the fuel has varying appearances, and finding enough

data to predict the fuel’s possible appearances can be difficult. Incidents such as this

example motivated me to develop visual perception algorithms introduced in Part I of

this thesis for challenging environments.

Example 3: Tham Luang Cave Rescue

In 2018, 12 members of a junior soccer team and their coach were trapped in the

Tham Luang cave in northern Thailand due to the heavy rainfall that flooded part

of the cave [19]. Degraded visibility and narrow routes of the cave with the risk of a
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seasonal monsoon made the rescue mission extremely challenging. The rescue work was

expanded into international efforts soon after because of the amount of work required

and its urgency. Consequently, more than 10, 000 people, including highly trained SEAL

divers from across the world, were involved in the rescue work [20]. In addition to the

human efforts, underwater robots and drones were deployed to aid search efforts, but

the robotic operations were not successful [21, 22]. This was mainly due to the lack of

robotic autonomy and the environmental challenges posed by the cave. The turbidity of

its water caused degraded visibility, and this worsened vision-based robotic navigation.

Also, GPS or Wi-Fi signals could not penetrate the ground, which made localizing inside

the cave difficult. With only human labor for the rescue work, it took 18 days to rescue

all the members, and two divers died during and after the rescue process. This shows the

similar challenges that AUVs could face while they search for underwater debris in the

first example. The urgency and potential benefit of addressing issues like this example

inspired our research on robotic exploration and localization presented in Part II of

this thesis. Furthermore, limited robotic autonomy due to the extreme challenges from

unstructured environments like caves motivated our research for enabling human-robot

collaboration presented in Part III of this thesis to augment robotic autonomy.

The aforementioned examples show existing challenges in unstructured environments

which have visually degraded conditions and data-scarcity issues. For instance, in these

environments, robots have to recognize objects (i.e., the melted fuel and underwater

debris) while the objects do not hold constant shapes. Appearances of the objects could

change drastically after some time, and existing images obtained from the ground would

be ineffective in training any object detection models. Furthermore, robotic localization

would be extremely difficult since the environmental factors (i.e., excessive radiation,

cave, and underwater) can deteriorate communication methods (e.g., Wi-Fi and GPS)

generally used to locate robots.

Among different types of unstructured environments, the underwater environment is

one environment that needs immediate attention. The underwater environment has the

largest ecosystem on Earth, but it has suffered severe destruction by various human ac-

tivities (e.g., littering, fishing, etc.) over the years. Particularly, underwater debris has

severely damaged the underwater environment as described in the first example. Such

destruction has started to affect billions of human lives and must be addressed. However,
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the problem is too large and dangerous for humans to handle. Hence, improving robotic

autonomy to tackle such a problem is a must. Additionally, addressing the underwa-

ter debris problem can be beneficial in tackling problems with similar characteristics

in other unstructured environments, as described in the above examples. Underwater

robots, generally referred to as autonomous underwater Vehicles (AUVs), have addi-

tional challenges due to the inhospitable nature of their environment. These include:

(1) the shape of each object can be modified over time due to chemical reactions, (2)

color absorption occurs as depth increases, (3) light scatters underwater causing blurred

and noisy underwater images, (4) GPS and other forms of radio frequency-based com-

munications are either completely unavailable or limited to extremely short ranges, (5)

landmark-based localization using exteroceptive sensors is not reliable due to the lack

of distinctive features underwater, and (6) running the state-of-the-art computer vision

and AI models on robotic hardware in real-time is often not feasible due to the lack of

computational power.

Besides overcoming the listed challenges above to achieve autonomy, the proper type

of AUVs needs to be deployed to address the examples introduced. It has been more

than 60 years since the self propelled underwater research vehicle (SPURV) [23], one of

the first AUVs, was developed in 1957. Since then, many AUVs have been introduced

with improved hardware and lower cost [24, 25]. AUVs can be classified into small

(< 1m), medium (> 1m,< 3m), large (> 3m,< 7m), and extra-large (> 7m) categories

based on their sizes. Large and extra-large size AUVs can handle heavier payloads,

perform longer missions, and be used for deep-sea exploration. However, a designated

mothership is required to deploy these AUVs. On the other hand, small and medium

AUVs have better versatility allowing access to narrow spaces such as an underwater

valley and cave. They are generally equipped with imaging sensors and have limited

computing power due to their small payload capacity.

Along with the progress of robotic hardware development, efforts to understand

underwater objects from images with neural networks (NNs) started in 2005 [26, 27].

However, computational requirements for NNs have been a roadblock to running such

algorithms on board AUVs. Also, the inherent data scarcity of the underwater domain

prevents training NNs with their maximum capacity. This degrades the performance
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of NNs compared to their counterparts in in-air applications. In parallel with improv-

ing the performance of NNs, utilizing human expertise via human-robot collaboration

(HRC) can help robots to understand previously unseen objects during missions, which

results in improved robotic autonomy. To this date, underwater HRC has not gained

much attention, although it has the potential to generate shared autonomy by exploit-

ing the strengths of both humans and robots [28]. Additionally, underwater navigation,

localization, and mapping are crucial problems to be addressed to increase robotic au-

tonomy [25]. However, they still remain challenging for small and medium AUVs since

algorithms addressing these problems generally rely on expensive and power-demanding

sensors (e.g., multi-beam sonar, long baseline (LBL), ultra-short baseline (USBL), and

short baseline (SBL) systems). Furthermore, most AUVs are proprietary and costly,

and this has contributed to the limited access to underwater robotic research.

Given this gap in the research, we present our efforts to address these problems

and improve robotic autonomy in unstructured environments. More specifically, in

this thesis, we will focus on developing algorithms with the goal of enabling robots

to autonomously complete challenging tasks underwater, such as cleaning underwater

debris. Considering the required maneuverability to navigate and identify underwater

debris, we will concentrate on developing algorithms for small and medium AUVs. In

particular, this thesis consists of the following four parts: Part I: visual perception in

data-scarce and visually challenging underwater environments, Part II: localization and

exploration in unstructured environments, Part III: algorithms for effective human-robot

collaboration, and Part IV: developing open-source underwater robotic systems. A more

detailed description of the parts of this thesis is given below. Additionally, we worked to

address perception challenges in agricultural and grasping robots, demonstrating that

our research is applicable across environments and applications. This additional work

will be covered in Appendices. The research described in this thesis presents excellent

opportunities to tackle a significant environmental problem and advance the autonomy

of field robots. This work, in turn, has the potential to benefit society greatly and

improve human well-being.
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Part I: Visual Perception in Data-Scarce and Visually Chal-

lenging Underwater Environments

The first part of this thesis presents the substantial perception challenges underwa-

ter and methods to overcome such challenges for detecting objects underwater, where

we focus on underwater debris detection. Part I consists of four chapters. Chapter 2

introduces the first deep learning-based approach [29] to address the underwater de-

bris problem in robotic platforms. In Chapter 3, we present a dataset, TrashCan [30]

created to improve the detection performance further with a larger amount of data.

TrashCan is the first publicly available underwater image dataset consisting of 7, 212

pixel-level annotated images of debris, robots, and a wide variety of undersea flora and

fauna. However, building large datasets is labor-intensive, and collecting imagery of

underwater debris, which is scarce, is difficult and dangerous. This makes TrashCan a

significant contribution to the autonomous detection of marine debris. In Chapter 4,

we introduce a generative approach [31] to overcome data scarcity, producing realistic

fake debris images to augment existing datasets using a two-stage variational autoen-

coder. Lastly, Chapter 5 presents an image blending method to generate images and

corresponding annotations simultaneously, which eliminates time-consuming dataset la-

beling efforts for training object detection models. Part I presents significant first steps

toward overcoming perceptual problems in challenging environments.

Part II: Robotic Exploration and Localization for AUVs

Part II of this thesis provides methods to find and identify objects underwater and

is composed of two chapters. Underwater robots frequently encounter unknown envi-

ronments. Chapter 6 proposes an approach to fuse depth and instance segmentation

information with an artificial potential field algorithm (APF), which makes it possible

for robots to keep flexible distances to objects (i.e., stay away from bio-organisms or

approach to objects of interests) during exploration. After detecting underwater debris

from exploration, accurate localization of AUVs is essential to estimate the location of

detected debris. Chapter 7 presents a low-cost approach by fusing bathymetry data of
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underwater environments with depth and altitude data from an AUV. Part II intro-

duces robotic exploration and localization methods for underwater, which are stepping

stones for collecting underwater debris autonomously while minimizing environmental

interferences and maximizing operation time.

Part III: Algorithms for Effective Human-Robot Collabo-

ration

Robotic operations are extremely challenging when AUVs explore fully unknown envi-

ronments or face previously unseen objects. Human-robot collaboration can be useful

to augment robotic perception underwater, but methods that allow a robot to find

divers and position itself to facilitate interactions remain unidentified. Part III presents

algorithms to enable underwater human-robot collaboration and consists of two chap-

ters. Chapter 8 presents the first underwater human-approaching algorithm that en-

ables robots to find the diver and achieve diver-relative positioning autonomously using

monocular vision and body priors. Chapter 9 introduces diver identification methods

for AUVs using face and pose information to secure human-robot collaboration. Part III

introduces the approaches that can be used to augment robotic autonomy with human

expertise while reducing the physical load for divers, thereby increasing human safety.

Part IV: Robotic Systems Development Toward On-board

Object Detection

Part IV of this thesis has one chapter. In Chapter 10, we present two robotic sys-

tems developed to support the presented research, underwater detection, AUV localiza-

tion, and exploration. One of them is LoCO, a low-cost and open-source AUV. It is a

general-purpose, single-person-deployable, and vision-guided AUV rated to a depth of

100 meters. LoCO has an open and modular design that can be expanded to provide

additional capabilities. Thus, LoCO allows us to add extra sensors as needed for our

research while lack of modularity becomes a constraint with other proprietary AUVs

such as Minnebot, which we have access to. The other is a data collection device called

HydroEye, which we design to reduce the overhead of robotic deployments and assist
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a scuba diver in collecting visual and other sensory data. The device is portable and

provides access to the collected data outside the water via Wi-Fi without disassembling

the device.

Appendices

This section consists of three parts. Appendix A provides additional figures for Chap-

ter 7 to show the localization performance of our proposed algorithms on eight lakes in

Minnesota. Appendix B presents present a multi-view vision system for the detection

and 3D localization of corn stalks in mid-season corn rows, called ROW SLAM [32]. I

have collaborated with a Ph.D. student Jiacheng Yuan and Professor Volkan Isler for

this work, where I have extended my research in the agricultural domain. Finally, Ap-

pendix C introduces a mapping approach that unifies semantic information and shape

completion inferred from RGBD images and computes confidence scores for its predic-

tions. This work [33] has been completed during my internship at the Samsung AI

Center New York, which has enabled me to develop my research into the manipulation

robotics field.



Part I: Visual Perception in

Data-Scarce and Visually

Challenging Underwater

Environments

A robot’s capability to perceive its surrounding is critical to being autonomous. How-

ever, detecting objects underwater poses substantial perception challenges to robots.

Underwater vision is degraded by three main phenomena: (1) color absorption occurs

as depth increases, (2) light scattering blurs underwater images, and (3) light refraction

causes objects to appear larger. Most underwater debris is asymmetrical and deforms

over time, which worsens the problem. Collectively, the research presented in Part I

presents significant first steps toward overcoming perceptual problems in challenging

environments. Chapter 2 presents the first deep learning-based approach [29] to detect

debris with AUVs by overcoming these challenges. To improve the detection perfor-

mance further, Chapter 3 introduces TrashCan [30], which is the first publicly available

underwater image dataset and consists of 7, 212 pixel-level annotated images of debris,

robots, and a wide variety of undersea flora and fauna. However, building such a dataset

requires a labor-intensive process, and collecting imagery of underwater debris is inher-

ently difficult and dangerous to divers. To address these risk and labor issues related

to the data collection process, we present a generative approach [31] in Chapter 4,

producing realistic fake debris images to augment existing datasets using a two-stage

variational autoencoder. Chapter 5 takes one step further from augmenting existing

10
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datasets by presenting an image blending algorithm that generates images and corre-

sponding annotations simultaneously. This eliminates labor-intensive dataset labeling

efforts for creating datasets to train object detection models.



Chapter 2

Object Detection for Underwater

Trash

One of the core capabilities for AUVs to be autonomous is perceiving objects they

encounter. In this chapter, we focus on enabling AUVs to detect underwater debris.

We consider a number of deep learning-based visual object detection algorithms; build a

dataset, Trash-ICRA19, to train and evaluate them on; and compare their performance

in the debris detection task with several metrics.

2.1 Related Work

Underwater autonomous robotics has been growing rapidly in significance and number

of applications. Some research has focused on developing multi-robot systems for explo-

ration of natural marine environments, both on the surface and underwater. Learning-

based detection of underwater biological events for marine surveillance has also been

explored [34]. Additionally, underwater robots have been used in multi-robot systems

for environmental surveillance (e.g., [35]), environmental mapping (e.g., [36]), marine

robotics for navigation and localization (e.g., [37, 38, 39, 40, 41]), and more.

There have been a number of efforts to identify the location of trash and marine

litter and analyze their dispersal patterns in the open ocean, particularly in the pres-

ence of eddies and other strong ocean currents. Mace looked into at-sea detection of

12
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marine debris [42] where he discussed possible applications of strategies and technolo-

gies. He points out that one of the major challenges is the debris being small, partially

submerged, and buried in the sea bed. His focus is thus narrowed down to the floating

debris on water parcel boundaries and eddy lines. Howell et al. [43] make a similar as-

sessment, with their work investigating marine debris, particularly derelict fishing gear,

in the North Pacific Ocean. Researchers have looked at the removal of debris from the

ocean surface after the tsunami off the Japanese coast in 2011 [44]. The work by Ge

et al. [45] uses LIDAR to find and map trash on beaches. Autonomous trash detection

and pickup for terrestrial environments have also been investigated; for example, by

Kulkarni et al. [46]. While this particular work is applied for indoor trash and uses

ultrasonic sensors, a vision-based system can also be imagined.

Recent work by Valdenegro-Toro [47] has looked into using forward-looking sonar

(FLS) imagery to detect underwater debris by training a deep convolutional neural

network (CNN) and has been demonstrated to work with approximately 80 percent ac-

curacy. However, this work uses an in-house dataset constructed by placing objects that

are commonly found with marine litter into a water tank and taking FLS captures in the

tank. The evaluation was also performed on water tank data. This work demonstrates

the applicability of CNNs and other deep models to the detection of small marine debris,

but it is unknown whether it will be applicable to natural marine environments.

Some debris detection processes use remotely operated vehicles underwater (ROVs)

to record sightings of debris and manually operate a gripper arm to remove items of

interest. The FRED (Floating Robot for Eliminating Debris) vehicles have been pro-

posed by Clear Blue Sea [48], a non-profit organization for environmental protection and

cleanup; however, the FRED platform is not an UAV. Another non-profit organization,

the Rozalia project, has used underwater ROVs equipped with multibeam and side-scan

sonars to locate trash in ocean environments [49].

To enable visual or sensory detection of underwater trash using a deep-learned ap-

pearance model, a large annotated dataset of underwater debris is needed. For cap-

turing the varied appearances across wide geographical regions, this dataset needs to

include data collected from a large spread of diverse underwater environments. Fortu-

nately, some of these datasets exist, although most are not annotated for deep learning

purposes. The Monterey Bay Aquarium Research Institute (MBARI) has collected a
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dataset over 22 years to survey trash littered across the sea bed off the western seaboard

of the United States of America [50], specifically plastic and metal inside and around

the undersea Monterey Canyon, which serves to trap and transport the debris in the

deep oceans. Another such example is the work of the Global Oceanographic Data Cen-

ter, part of the Japan Agency for Marine Earth Science and Technology (JAMSTEC).

JAMSTEC has made a dataset of deep- sea debris available online as part of the larger

J-EDI (JAMSTEC E-Library of Deep-sea Images) dataset [51]. This dataset has images

dating back to 1982 and provides type-specific debris data in the form of short video

clips. The work presented in this paper has benefited from annotating this data to

create deep learning-based models.

2.2 Data Source and Training Set Construction

This work evaluates four deep learning architectures for underwater trash detection. To

evaluate these four networks, we construct a first of its kind dataset, Trash-ICRA19 [52],

for training and evaluation, define our data model, and annotate images for training.

2.2.1 The Trash-ICRA19 Dataset

The dataset for this work was sourced from the J-EDI dataset of marine debris which

is described in detail in the previous section. The videos that comprise that dataset

vary greatly in quality, depth, objects in scenes, and the cameras used. They contain

images of many different types of marine debris, captured from real-world environments,

giving us a variety of objects in different states of decay, occlusion, and overgrowth.

Additionally, the clarity of the water and quality of the light vary significantly from

video to video. This allows us to create a dataset for training which closely conforms

to real-world conditions, unlike previous contributions, which mostly rely on internally

generated datasets.

Our training data was drawn from videos labeled as containing debris, between the

years of 2000 and 2017. From that portion of data, we further selected all videos which

appeared to contain some kind of plastic. This was done in part to reduce the problem

to a manageable size for our purposes, but also because plastic is an important type of

marine debris [53]. At this point, every video was sampled at a rate of three frames per
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Figure 2.1: An example of a labeled training image showing two classes: the ‘plastic’ class in
blue, and the ‘ROV’ class in yellow.

second to produce images which could be annotated to prepare them for use in learning

models. This sampling produced over 240, 000 frames, which were searched manually for

the good examples of plastic marine debris and then annotated. The annotating process

was completed by a number of volunteers, who used the freely available LabelImg [54]

tool. The final training dataset used in this work was composed of 5, 720 images, with

dimensions of 480x320. More images have been labeled since, and a fully labeled dataset

will be publicly released in the near future.

2.2.2 Data Model

Our trash detection data model has three classes, defined as follows:

• Plastic: Marine debris, all plastic materials.

• ROV: All man-made objects(i.e., ROV, permanent sensors, etc), intentionally

placed in the environment.

• Bio: All natural biological material, including fish, plants, and biological detritus.

The model is designed to find all plastic debris, separating debris from biological en-

tities and intentionally placed man-made objects. These two distinctions are important,
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as accidental removal of biological entities such as plants or animals could damage the

very ecosystems we hope to protect, and the destruction of intentionally placed parts

such as a sensor array could set back cleanup efforts significantly.

Other versions of this data model were tested: one including a label for timestamp

text on the screen (rejected due to lower accuracy) and models with multiple classes for

different plastic objects (rejected for lack of data on some classes and lower detection

performance overall). Both versions achieved lower accuracy than this model on all

networks. Examples of labeled classes in images from this data model can be seen in

Fig. 2.1.

2.2.3 Evaluation Data

To evaluate the models, test images which contained examples of every class in our

model were selected for a test set. However, these images were drawn from videos of

objects which had not been used to train the network, so there is no overlap between the

training and test set. Different types of plastic objects were selected, such as grocery

bags, plastic bottles, etc. At least three different videos and a minimum of 20 images

per class were collected for each of these types of objects. In the end, 820 such images

were collected and annotated for testing. These images contained examples for each

class, in a variety of environments, which were intentionally selected to be challenging

to the debris detectors, so as to provide a realistic evaluation of how these detectors

would perform in field conditions.

2.3 Network Architectures

The four network architectures selected for this project were chosen from the most

popular and successful object detection networks in use today. Each one has its own

benefits and drawbacks, with varying levels of accuracy and runtime speeds.

2.3.1 YOLOv2

You Only Look Once (YOLO) v2 [55] is the improved version of YOLO, an earlier

network by the same authors. Although YOLO is much faster than Fast R-CNN, Faster

R-CNN, and other models, it has notable localization errors and low recall in comparison
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with other state-of-the-art object detection algorithms. With several techniques such

as batch normalization, a higher resolution for input images, and a change in the way

bounding boxes are proposed to use anchor boxes, YOLOv2 improves upon the accuracy

of its predecessor. In order to process faster, YOLOv2 uses a custom network called

Darknet-19 rather than VGG-16, which is used by many object detection algorithms.

Darknet-19 requires only about one-sixth of the floating point operations of VGG-16

for a single pass of an input image.

2.3.2 Tiny-YOLO

Tiny YOLO [56] was introduced along with YOLO. Tiny-YOLO is based on the neural

network that has a smaller number of convolutional layers and filters inside the layers

compared to the network used by YOLO while sharing the same parameters with YOLO

for training and testing. In this way, tiny-YOLO runs at even faster speeds than YOLO

while having similar mean Average Precision (mAP) values. Tiny-YOLO is especially

useful to implement object detection for applications where computational power is

limited (e.g., for energy consumption reasons) such as field robotics.

2.3.3 Faster RCNN with Inception v2

Faster RCNN [57] is an improvement on R-CNN [58] that introduces a Region Proposal

Network (RPN) to make the whole object detection network end-to-end trainable. The

RPN uses the last convolutional feature map to produce region proposals, which is then

fed to the fully connected layers for the final detection. The original implementation

uses VGG-16 [59] for feature extraction; we use the Inception v2 [60] as feature extractor

instead because it is known to produce better object detection performance in standard

datasets [61].

2.3.4 Single Shot MultiBox Detector (SSD) with MobileNet v2

Single Shot MultiBox Detector (SSD) [62] is another object detection model that per-

forms object localization and classification in a single forward pass of the network. The

basic architectural difference of SSD with YOLO is that it introduces additional convo-

lutional layers to the end of a base network which results in improved performance. In
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our implementation, we use MobileNet v2 [63] as the base network.

2.4 Training

All four networks were trained according to the methods suggested by the community

around the networks [61, 64], using on a Linux machine, using four Nvidia GTX 1080s.

In general, this involved fine-tuning the networks with some pretrained weights which

had been trained on the COCO dataset [65], a large-scale detection dataset. There

were 5,720 images in our training set for each network, resized to 416x416 in the case

of YOLOv2 and Tiny-YOLO. For RCNN, SSD, and Tiny-YOLO, we simply fine-tuned

each network for a few thousand iterations.

However, in the case of YOLO, the network was not only fine-tuned, but also trained

using a transfer learning. Transfer learning [66] is a technique used to improve learning

in a new task by transferring knowledge from related tasks. The goal of transfer learning

is to expedite the learning process by utilizing prior knowledge from one domain to new

related domains. There are several benefits of applying transfer learning to this problem.

First, the chance of the network properly converging for a new task may be better.

Instead of training from a base, it uses the transferred knowledge to set initial training

parameters. This may prevent a model from becoming trapped in local minima. Second,

learning time to find parameters of a network may be reduced compared to learning from

a base. Lastly, the final inference may have better performance than learning without

transferred knowledge. In this study, we froze all but the last several layers so that

only the last few layers had their weights updated during the training process. In this

way, we attempt to capitalize on the fact that earlier layers’ pretrained weights already

encode for basic image features, and simply train the last few layers of YOLOv2. We

report the results of these transfer-learned versions separately from the RCNN, SSD,

and Tiny-YOLO results, to explore the possibility of using transfer learning to overcome

deficiencies in a dataset.
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2.5 Evaluation

2.5.1 Metrics

The four different networks used for the marine debris detector were evaluated using

the two standard performance metrics below:

• mAP (Mean Average Precision) is the average of precision at different recall values.

Precision is the ratio precision =
TP

TP+FP
, and recall is the ratio recall = TP

TP+FN
,

where TP, FP, and FN stand for True Positive, False Positive, and False Negative.

• IoU (Intersection Over Union) is a measure of how well predicted bounding boxes

fit the location of an object, defined as IoU =
area of intesection

area of union
, where the intersec-

tion and union referred to are the intersection and union of the true and predicted

bounding boxes.

These two metrics concisely describe the accuracy and quality of object detections.

2.5.2 Hardware

Additionally, runtime performance metrics are provided on a GPU (Nvidia 1080), em-

bedded GPU (Nvidia Jetson TX2), and CPU(an Intel i3-6100U) in terms of the number

of frames which can be processed per second (FPS). The hardware used for evaluation

is only relevant to the runtime. Performance metrics, such as mAP, IoU, and recall, can

be calculated identically on any device. The devices were selected to provide an indi-

cation of how these models could be expected to perform in an offline manner (GPU),

in real-time on a computationally powerful robotic platform (embedded GPU), and in

a lower-power robotic platform (CPU).

2.6 Results

The results below were obtained on the test dataset described in subsection 2.2.3, which

was designed to be challenging to the models and to provide a true-to-life representation

of how a marine debris detector would have to operate. The videos from which the test

data is sourced are mostly from 10 years or more before the time of videos in the
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Table 2.1: Detection metrics in mAP, IoU, and AP.

Network mAP Avg. IoU plastic AP bio AP rov AP

YOLOv2 47.9 54.7 82.3 9.5 52.1
Tiny-YOLO 31.6 49.8 70.3 4.2 20.5
Faster R-CNN 81.0 60.6 83.3 73.2 71.3
SSD 67.4 53.0 69.8 6.2 55.9

Table 2.2: Performance metrics in frames per second.

Network 1080 TX2 CPU

YOLOv2 74 6.2 0.11
Tiny-YOLO 205 20.5 0.52
Faster R-CNN 18.75 5.66 0.97
SSD 25.2 11.25 3.19

Table 2.3: Detection metrics for different training methods for YOLO.

YOLO Training mAP Avg. IoU plastic AP bio AP rov AP

Fine Tuned 47.9 54.7 82.3 9.5 52.1
Last 4 Layers 33.9 45.4 71.3 13.6 17.0
Last 3 Layers 39.5 34.1 74.6 19.9 23.9

training set; they differ from each other and the training set in location, depth, and

the camera used to capture the scene. Because of these factors, the test set provides a

good indicator of how these detectors would perform across different platforms over the

course of many years and through many environmental changes. This does degrade the

performance of the detector from what could have been achieved if data with similar

appearance was chosen, but it is a better evaluation of what the detector’s performance

would be in the field. Along with evaluating the data on our test set, we also processed

three additional videos, with each network, which can be seen in Fig. 2.2 as well as in

the video submitted with this paper. The third video, which is shown in Figs. 2.2i -

2.2l, is a viral video of ocean trash recorded in Bali [1]. Being from an entirely different

visual environment than our training and test data, it challenges all of our detectors

greatly, but some promising detections can be seen over the course of the video.
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2.6.1 Quantitative Results

The results shown in Table 2.1 are encouraging. The networks tested have fairly good

average precision for the plastic class (similar to the accuracy of the FLS imagery based

approach in [47]). They also display some known traits of the network architectures

used. Overall, YOLOv2 and Tiny-YOLO have lower mAP when compared to Faster

R-CNN and SSD. Conversely, Faster R-CNN and SSD have higher processing times,

as seen in Table 2.2. These traits are well known, but it is important to note that

their performance remain consistent in this application. This trade-off between mAP

and FPS does not affect IoU, however. All four network architectures have similar IoU

values, meaning that none are the clear victor in terms of how accurate their bounding

boxes are.

In terms of which method would be the ideal for underwater trash detection, Faster

R-CNN is the obvious choice purely from a standpoint of accuracy, but falters in terms

of inference time. YOLOV2 strikes a good balance of accuracy and speed, while SSD

provides the best inference times on CPU. If performance is the primary consideration,

however, Tiny-YOLO outpaces all other algorithms significantly on the TX2, the most

realistic hardware for a modern AUV.

We can also see the results of including classes with too few examples, particularly

in the case of the bio class, which has many fewer examples in the training set, despite

being at least as varied as the plastic trash in the underwater environment. The fact

that classes with few training images relative to their complexity will perform well is

not surprising in any way, but highlights some of the difficulties inherent in creating a

dataset for trash detection: some objects may only be encountered a handful of times

but should still count as trash, or be marked as biological and therefore not be removed.

It is worth noting that in the case of the bio class, the versions of YOLO trained

using transfer learning are significantly more accurate. We believe this to be related

to the types of objects that the pre-trained weights were trained to detect and the

preponderance of plastic objects in the dataset. Simply put, by not updating those

earlier layers, we avoid skewing the basic image features towards plastic objects, reducing

plastic detection accuracy slightly which increasing that of the bio class.
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(a) YOLOv2 (b) Tiny-YOLO (c) Faster R-CNN (d) SSD

(e) YOLOv2 (f) Tiny-YOLO (g) Faster R-CNN (h) SSD

(i) YOLOv2 (j) Tiny-YOLO (k) Faster R-CNN (l) SSD

Figure 2.2: Example detection results. In images 2.2a-2.2d it can be seen that while all networks
detect some plastic objects, only YOLOv2 (2.2a) correctly identifies the fish in the scene as bio
and Faster-RCNN (2.2c) detects more individual plastic items than any other network. In images
2.2e-2.2h, the same evidence of Faster-RCNN’s (2.2g) ability to detect more individual objects
can be seen. Images 2.2i-2.2l are from [1], and display how the detectors work on data drawn
from a visually different source. YOLOv2 (2.2i) and Faster-RCNN (2.2k) both successfully find
plastic and ROV objects, but no detectors perform sufficiently.
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2.6.2 Qualitative Results

The most substantial result from this evaluation is the answer to the question we set

out to investigate: can we use deep-learning based visual object detection methods to

detect marine debris in real-time? The answer, borne out by our detection accuracy

and performance results is, yes, plausibly. There are some difficulties in constructing a

representative dataset, but overall our detection results lead us to believe that detectors

similar to these could be used to find trash underwater with high enough accuracy to

be useful. Moreover, the observed performance, especially on the Nvidia Jetson TX2,

is very encouraging for the prospect of a real-time application. The Jetson is small

enough to conceivably be used in an AUV, and although it increases the electrical and

thermal load of the system, we believe the increase to be manageable, with the Jeston

only requiring 15 watts [67] and producing minimal heat. This, combined with its

performance in tasks such as these, makes the Jetson ideal for mobile robotics, even

for our specific use case. With a Jetson installed, any AUV should be able to achieve

real-time trash detections with reasonable accuracy.

2.7 Conclusion

In this chapter, we evaluate a number of deep-learning algorithms performing the task

of visually detecting trash in realistic underwater environments, with the eventual goal

of exploration, mapping, and extraction of such debris by using AUVs. A large and

publicly-available dataset of actual debris in open-water locations is annotated for train-

ing a number of convolutional neural network architectures for object detection. The

trained networks are then evaluated on a set of images from other portions of that

dataset, providing insight into approaches for developing the detection capabilities of

an AUV for underwater trash removal. In addition, the evaluation is performed on

three different platforms of varying processing power, which serves to assess these al-

gorithms’ fitness for real-time applications. While our research in this chapter makes

progress toward AUVs being able to detect underwater debris, these algorithms show

degraded detection accuracy. To address this limitation, a larger size dataset is needed.

We introduce our approach to this problem in the next chapter.



Chapter 3

A Semantically-Segmented

Dataset towards Visual Detection

of Underwater Debris

Data scarcity in terms of volume and variety remains a primary issue in the tasks of

visual detection of underwater debris. To address this issue, we introduce an instance-

segmentation labeled dataset, TrashCan, in this chapter. The proposed dataset and our

baseline results are presented in detail in the following sections.

3.1 Motivation, Problem Statement, and Related Work

Marine debris poses a significant threat to the aquatic ecosystem and has been an ever-

increasing challenge to tackle. Different environmental and government agencies have

proposed and adopted a number of approaches for the cleanup of underwater trash,

though few have been broadly successful. Moreover, the difficulty of the cleanup task

increases many folds because of the need to precisely detect trash deposits and locate

them, and subsequently remove such trash while protecting underwater flora and fauna.

Vision-equipped autonomous underwater vehicles (AUVs) could be used to address these

challenges. Along with underwater visual localization algorithms [68], a robust trash

detection feature will provide AUVs with the capability to both detect and locate trash,
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and possibly remove it themselves or make it easier for manned cleanup missions. A

precise underwater trash detector, however, would need a significant dataset to train

deep neural nets (e.g., CNNs) for visually detecting debris which are often deformed

and take non-rigid shapes. Unfortunately, no such datasets have been made available

to the public.

This paper presents TrashCan, a large dataset comprised of images of underwater

trash collected from a variety of sources [51], annotated both using bounding boxes

and segmentation labels, for the development of robust detectors of marine debris. The

dataset has two versions, TrashCan-Material and TrashCan-Instance, corresponding

to different object class configurations. The eventual goal is to develop efficient and

accurate trash detection methods suitable for onboard robot deployment. Along with

information about the construction and sourcing of the TrashCan dataset, we present

initial results of instance segmentation from Mask R-CNN [69] and object detection

from Faster R-CNN [57]. These do not represent the best possible detection results but

provide an initial baseline for future work in instance segmentation and object detection

on the TrashCan dataset.

While the topic of removing marine debris from surface and subsea environments

has been a topic of scientific inquiry for some time, autonomous detection of trash has

been less studied. Researchers have studied at the removal of debris from the ocean

surface [44], mapping trash on beaches using LIDAR [45], and using forward-looking

sonar (FLS) imagery to detect underwater debris by training a deep convolutional neural

network (CNN) [47]. More recently, we presented an initial evaluation of state-of-the-art

object detection algorithms for trash detection, using a predecessor of TrashCan [70],

and showed how such datasets could be effectively improved with data produced by

generative models [31]. TrashCan is the next step for the autonomous detection and

removal of trash: a larger, more detailed, and more varied dataset of marine debris for

training deep neural networks for object detection.

3.2 The TrashCan Dataset

The TrashCan dataset is comprised of annotated images (7, 212 images currently) which

contain observations of trash, ROVs, and a wide variety of undersea flora and fauna.
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The annotations in this dataset take the format of instance segmentation annotations:

bitmaps containing a mask marking which pixels in the image contain each object.

While datasets have previously been created containing bounding box level annotations

of trash in marine environments, including one of our own creation [70], TrashCan

is, to the best of our knowledge, the first instance-segmentation annotated dataset of

underwater trash.

Dataset Source and Composition: The imagery in TrashCan is sourced from the

J-EDI (JAMSTEC E-Library of Deep-sea Images) dataset [51], curated by the Japan

Agency of Marine Earth Science and Technology (JAMSTEC). This dataset contains

videos from ROVs operated by JAMSTEC since 1982, largely in the Sea of Japan. A

small portion of these videos contain observations of marine debris, and it is from these

that all of our trash data is sourced, nearly one thousand videos of varying lengths. In

addition to the videos of marine debris, additional videos were selected to diversify the

biological objects present in the dataset.

Annotation Process and Tools: Once the videos had been selected, they were

preprocessed by extracting frames from each video at a rate of one frame per second

to create a large folder of frames for each video. Once this was done, the videos were

combined into similarly-sized portions and uploaded to Supervisely [71], an online image

annotation tool. Once uploaded, the images were annotated by a team of 21 people,

one image at a time. This took approximately 1, 500 work hours, over the course

of several months. if an image was considered acceptable for labeling, the person to

whom it was assigned drew a segmentation mask over it, marking it as one of four

classes: trash (any marine debris), rov (any man-made item intentionally placed in

the scene), bio (plants and animals), and unknown (used to mark unknown objects).

Trash objects were additionally tagged by material (e.g., metal, plastic), instance (e.g.,

cup, bag, container), along with binary tags indicating overgrowth, significant decay, or

crushed/broken items. Bio objects were tagged as either plant or animal, and in the

case of animals, given a tag with the type (e.g., crab, fish, eel). ROV and unknown

class objects required no additional tags.

Object Class Versions: To prepare the dataset for use in training deep networks,

it was converted from a custom JSON format to the COCO format [65]. This involved

converting the bitmap masks into COCO annotations comprised of polygon vertices



27

(a) TrashCan-Material

(b) TrashCan-Instance

Figure 3.1: Data split between training (pink) and validation (blue) sets per object for the two
versions of the dataset.

and transforming the classes and tags of Supervisely annotations into classes for COCO

objects. We converted all objects into one of two dataset versions: TrashCan-Material

and TrashCan-Instance (Fig. 3.1), so named for the tag data used to differentiate be-

tween different types of trash. In the material version, every trash object was given a

class name following the pattern trash [material name] (e.g., trash paper, trash plastic),
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as long as the given material had more than 50 objects in the dataset. Those with

fewer examples were given the class trash etc, the same class used by annotators when

the material of the object was unknown. Similarly, for the TrashCan-Instance version,

trash classes were generated using instance tags which approximated the type of object

that was being annotated (e.g., trash cup, trash bag). The same cutoff of 50 objects

was used, with the catch-all class being trash unknown instance. In both versions, any

object labeled with the unknown class was typically added to the catch-all trash class.

The ROV class remained singular for both versions, while bio objects were either turned

into plant or animal [animal type] (e.g., animal starfish, animal crab) classes, based on

tags applied to the object.

3.3 Baseline Experiments

We present experiments with state-of-the-art instance segmentation and object detec-

tion models using two example datasets to provide a baseline for future model develop-

ment. For the following experiments, we use the Pytorch Detectron2 [72] library and

metrics introduced in COCO dataset to establish a baseline evaluation.

Detection Experiments: For object detection, we employed Faster R-CNN with

a ResNeXt-101-FPN (X-101-FPN) [73] backbone. The model was trained on a pre-

trained model with COCO dataset with an Nvidia Titan XP for 10, 000 iterations.

Segmentation Experiments: Mask R-CNN with X-101-FPN was chosen for

instance segmentation task. The model was initialized with weights from the COCO

dataset and trained for 15, 000 iterations using an Nvidia Titan V.

Table 3.1: Overall metrics for each combination of dataset and model.

Method Dataset AP AP50 AP75 APS APM APL

Mask R-
CNN

Instance 30.0 55.3 29.4 23.2 31.7 48.6

Mask R-
CNN

Material 28.2 54.0 25.6 24.1 28.7 41.8

Faster R-
CNN

Instance 34.5 55.4 38.1 27.6 36.2 51.4

Faster R-
CNN

Material 29.1 51.2 27.8 28.2 30.2 40.0
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(a) TrashCan-Material

(b) TrashCan-Instance

Figure 3.2: Results from Faster R-CNN (pink) and Mask R-CNN (blue) in terms of per-class
average precision.
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Figure 3.3: Sampled results for object detection and image segmentation for both versions of
the TrashCan dataset.

3.4 Results

Fig. 3.2 and Table 3.1 show evaluation metrics of object detection and instance segmen-

tation with each dataset. For both object detection and instance segmentation tasks,

the models trained with the instance version dataset achieve higher AP in general. We

believe this is because more visually similar objects are grouped into classes: while most

cans look similar, not all metal objects look similar. Fig. 3.3 displays sampled results

from object detection and instance segmentation models trained with both versions of
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the datasets. The results include a wide spectrum of object sizes and environments.

Although the baseline metrics are acceptable considering the challenging nature of this

dataset, there is room for improvement in future work, either by increasing the size of

the dataset or by employing more advanced models.

3.5 Conclusion

In this chapter, we present our methods to overcome the data scarcity issue for un-

derwater debris detection. To tackle this, we introduce TrashCan, which provides the

first instance-segmented trash dataset in existence, along with semantic information

about the material and type of the object. It is our hope that the release of TrashCan

will facilitate further research on this challenging problem, bringing the marine robotics

community closer to a solution for the urgent problem of trash detection and removal. In

the next chapter, we present a generative approach, TrashVAE, for augmenting existing

datasets with realistic images.



Chapter 4

A Generative Approach for Data

Augmentation

Collecting imagery of marine debris is not just time-consuming but costly and physically

demanding. To resolve this issue, we propose TrashVAE in this chapter, which is a

method composed of a two-stage variational autoencoder (VAE) and binary classifier for

producing realistic synthetic underwater debris images. The approach and evaluations

are presented in detail in the following sections.

4.1 Related Work

Various generative models [74] have been proposed to generate realistic imagery, and

they are used for data augmentation in the non-underwater domain [75] to improve

object classification and detection tasks. Although there are generative model-based

studies for the underwater domain, they mainly focus on image enhancements, such as

WaterGAN [76], UGAN [77], and the synthesis of unpaired Underwater images using a

Multistyle GAN (UMGAN) [78].

WaterGAN uses pairs of non-underwater images and depth maps to train its gener-

ative model. Then, it generates underwater images from above-water images. UGAN

uses CycleGAN [79] to generate distorted images from images with no distortion, with

the Wasserstein GAN [80] used to prevent the adversarial training process from destabi-

lizing. UMGAN combines CycleGAN and Conditional GAN [81] to generate multistyle

32
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underwater images. Although UMGAN generates images with various turbidity and

colors, output images are equivalent to the input images except for their colors and

turbidity. With all these methods, it is challenging to realistically simulate color and

shape distortions of various kinds of materials underwater since they have no effect on

the objects which are present in the original image; these methods simply perform a

broad domain-transfer technique to simulate underwater imagery.

It can be challenging to tune hyperparameters for GAN models, which aim to find

the Nash equilibrium of a two player min-max problem [82, 83]. While VAE-based

approaches generate blurrier images than GAN-based ones, those based on the VAE

are more stable during training and less sensitive to hyperparameter choices. Among

recent VAE enhancements, only the two-stage VAE [84] focuses on improving visual

quality scores rather than improving log-likelihood scores. As a result, the two-stage

VAE produces high-fidelity images which have visual quality scores close to the GAN

enhancements while being much more stable during training.

As mentioned earlier in this section, the approaches adding various effects to the

input images are limited in that they can only create images they have seen. There

are currently no effective methods for solving the data scarcity problems in the under-

water domain. Therefore, it is necessary to develop generative models which produce

underwater images that are not dependent on input images.

4.2 Methodology

The proposed two-stage VAE model is trained with an existing dataset of underwater

trash images (see Section 4.3 for details). After training, the model is used to generate

synthetic underwater trash images, which are subsequently classified by hand (human

observers) as “good” or “bad” based on their quality. This generated and classified data

is then used to train an automated binary classifier. After training both the VAE and

the binary classifier, we are able to generate and append good quality images to our

dataset; the process is depicted in Fig. 4.1. Lastly, the effect of the dataset expansion

is evaluated with a multi-class classifier trained to discriminate between trash and non-

trash objects.
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Underwater two-stage VAE

Binary classifier

Append images to dataset

Discard images

Generate images

Good images

Bad images

Figure 4.1: Flowchart showing image generation, filtering, and augmentation process for ex-
panding an image dataset (green color represents trained models).

4.2.1 Data Collection

We collect and annotate images of plastic bags and plastic bottles since these are com-

mon objects which have a wide variety of shapes and frequently deform significantly

over time underwater. Additionally, plastic makes up the lion’s share of marine debris

and has the most detrimental effect on the ecosystem. These factors make it challenging

to build a truly representative dataset purely from observations. The images are ob-

tained from the J-EDI (JAMSTEC E-Library of Deep-sea Images) dataset [51] and web
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Figure 4.2: The architecture of the two-stage VAE.
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Figure 4.3: The architecture of the multi-class classifier.

scraping. These images are then cropped to have tight bounds around the contained

objects as shown in Fig 4.5. The J-EDI dataset consists of images which have been

collected since 1982 at various locations and depths. It is also sorted by types of trash.

We collect plastic trash video clips from the J-EDI dataset, label objects in each clip,

and build our own dataset, which will be released in the near future. Lastly, we add

images from the web to bring more variety to our dataset.

4.2.2 Variational Autoencoder

The VAE aims to learn a generative model of input data x ∈ X . The dataset X is

d-dimensional and it has a r-dimensional manifold. The value of r is unknown. We use

the term ‘VAE’ to denote a single-stage VAE in the rest of this paper.

Single-stage VAE (original VAE)

The VAE consists of two neural networks which are an encoder qϕ(z∣x) and a decoder

pθ(x∣z). The encoder outputs the parameters of the normal distribution, µ and σ.

From N(µ, σ), the κ-dimensional latent variable z is sampled. Once the latent variable

z is sampled and provided as an input to the decoder, it generates the reconstructed

original input x̂. The cost function for the VAE is shown in Eq. 4.1 where µgt is a

ground-truth probability measure and ∫X µgt(dx) = 1. The function is minimized by

stochastic gradient descent and the VAE jointly learns the latent variable and inference
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Figure 4.4: Sample generated images from the two-stage VAE for each trash class.

models during the training.

L(θ, ϕ) = ∫
X
{ − Ez∼qϕ(z∣x)[log pθ(x∣z)]

+KL[qϕ(z∣x)∣∣p(z)]}µgt(dx)
(4.1)

Two-stage VAE

The VAE, compared to the GAN, (1) gives interpretable networks [85], and (2) remains

stable during training [86]. However, the Gaussian assumption for the encoder and

decoder of the VAE reduces the quality of generated images [87].

In [84], the authors show that there exist the parameters ϕ and θ which optimize the

VAE objective with the Gaussian assumptions. Based on this finding, the authors show
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(a) (b) (c) (d)

Figure 4.5: Examples of underwater trash images collected and annotated for training the
proposed model. Images are collected from a variety of underwater conditions, and contain a
variety of objects ranging from plastics to metals.

that the two-stage VAE finds the parameters ϕ and θ closer to the optimal solution

than the parameters found by the VAE. The structure of the two-stage VAE is shown in

Fig. 4.2. As explained in section 4.2.2, each encoder yields parameters for the normal

distribution and the values sampled from the distribution are fed to each decoder to

generate the reconstructed input.

The cost function in Eq. 4.1 is used without any modification for the two-stage

VAE. Each stage of the two-stage VAE is trained sequentially from the first stage to

the second stage, rather than jointly. We choose the ResNet structure [88] for the stage

1 VAE and select four fully connected (FC) layers for the stage 2 VAE. Each FC layer

is 1024-dimensional in our model. The network for the stage 2 VAE is smaller than the

stage 1 VAE since it is assumed that d≫ κ ≥ r, where d is the dimension of the dataset

X , κ is the dimension of the latent variable z, and r is the dimension of the manifold.

We use the Fréchet Inception Distance (FID) score [89] to evaluate the quality of

generated images. Lower FID scores represent higher image quality. It extracts features

from generated images and real images using an intermediate layer of InceptionNet [90].

The data distribution of the features from generated images and real images are modeled

separately using a multivariate Gaussian distribution. Then the FID score is calculated

by Eq. 4.2 where µ is mean, and Σ is covariance.

FID(x, g) = ∣∣µx − µg∣∣22 + Tr(Σx + Σg − 2(ΣxΣg)
1
2 ) (4.2)

4.2.3 Binary Classifier

A binary classifier is built on ResNet-50 [88] to select good quality images from the

generated images. The original input dimension of ResNet-50 is (224, 224, 3), but we
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Figure 4.6: Sample outputs from the binary classifier. “Good quality” generated images of each
class are used to expand the dataset whereas the “bad quality” images are rejected. Qualitatively,
it is apparent that “bad quality” images are poor representations of objects of their class.

change it to (128, 128, 3) to match the input dimension to the output dimension of the

two-stage VAE model. The remaining structure of ResNet-50 is maintained.

Table 4.1: Generation and classification evaluation

(a) FID scores for the two-stage VAE

Stage 1 Stage 2 Reconstruction

Bag 98 196 175

Bottle 223 301 240

(b) Accuracy for the binary classifier

Training Acc. Validation Acc. Test Acc.

Bag 0.89 0.88 0.86

Bottle 0.88 0.83 0.82

4.2.4 Multi-class Classifier

The network for a multi-class classifier is designed to quantify the improvements to

object classification tasks using generated images. The input is resized to (32, 32, 3).
It has two convolutional layers followed by one dense layer and one dropout layer. A

softmax function is used as the activation function for the output layer and classifies

three classes. One class is for our generated images, and the other two are for underwater

background and fish. The architecture of the network is shown in Fig. 4.3.
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We use three metrics to evaluate the performance of the multi-class classifier: pre-

cision, recall, and F1 score. Precision is useful if the cost of false positives is high.

Recall is important when the cost of false negatives is high. Lastly, F1 score provides

the balanced information between precision and recall [91]. In our case of classifying

trash, the cost of false positives is relatively higher than the cost of false negatives. This

is because the consequences of accidentally removing something from the environment

that is not trash (i.e., fish, coral, etc.) are much worse than the consequences of missing

a single piece of trash.

4.3 Experiments and Results

We train our models on an NVIDIA Titan-class GPU with the Tensorflow library. One

epoch takes 1-2 seconds for the stage 2 VAE, the binary classifier, and multi-class

classifier. It takes 17-18 seconds for each epoch of the stage 1 VAE model.

4.3.1 Data Collection

From web scraping and the J-EDI dataset, we collect 775 images of plastic bags and

283 images of plastic bottles. We augment each class of images by flipping horizontally,

vertically, and rotating them by 90 degrees. As a result, we have a total of 3, 000

images of plastic bags and 1, 000 images of plastic bottles. For training and testing

the multi-class classifier, we use the QUT fish dataset [92] which has 4, 405 fish images

and randomly select 3, 000 images. We also collect 271 images of underwater scenes

without objects and augment them using the methods described above, resulting in

3, 000 images.

4.3.2 Image Generation

Two two-stage VAE models are trained separately, one for each class of trash. We use

different parameters to train each model due to the significant difference in the size of

the collected datasets. During the training process, we use the mean absolute error

(MAE) [93] in Eq. 4.3 as a stopping criterion for each stage of the VAE in addition to

the loss functions from the original VAE. The MAE is used since it is robust to outliers

and helps to evaluate the training progress.
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Table 4.2: Evaluation of object classification tasks: 3 multi-class classifiers are trained separately
for plastic bag and bottle cases. In both cases, addition of generated data improves classifier
performance in precision, recall, and F1 score (shown in bold entries) for the instance classes.

Plastic Bag

Real Generated Mixed
Precision Recall F1 score Support Precision Recall F1 score Support Precision Recall F1 score Support

bag 0.96 0.62 0.76 300 0.96 0.80 0.87 300 0.95 0.78 0.86 300

fish 0.95 0.95 0.95 300 0.94 0.97 0.95 300 0.95 0.96 0.95 300

empty 0.74 0.99 0.84 300 0.87 0.99 0.93 300 0.85 0.99 0.92 300

avg/tot 0.88 0.86 0.85 900 0.92 0.92 0.92 900 0.92 0.91 0.91 900

Plastic Bottle

Real Generated Mixed
Precision Recall F1 score Support Precision Recall F1 score Support Precision Recall F1 score Support

bottle 0.93 0.78 0.85 300 0.93 0.78 0.85 300 0.97 0.80 0.87 300

fish 0.89 0.94 0.91 300 0.83 0.96 0.89 300 0.91 0.96 0.93 300

empty 0.89 0.98 0.94 300 0.96 0.97 0.96 300 0.89 1.00 0.94 300

avg/tot 0.90 0.90 0.90 900 0.91 0.90 0.90 900 0.92 0.92 0.92 900

MAE =
1
n

n

∑
i=1

∣xi − x̂i∣ (4.3)

1. Plastic Bag: For the stage 1 VAE, we use ResNet with a base dimension of 16

and a kernel size of 3, training it for 3, 000 epochs. For the stage 2 VAE, four

1024-dimensional dense layers are used. The dimension of the latent variable is

12 and the batch size is 16. We train for 6, 000 epochs for the stage 2 VAE.

2. Plastic Bottle: For the stage 1 VAE, we use the same network and parameters as

the model for the plastic bag class, also training for 3, 000 epochs. For the stage 2

VAE, four layers of 1024-dimensional dense layers are used. Both the dimension

of the latent variable and batch size is 8. We train for 6, 000 epochs for the stage

2 VAE.

The samples of generated images are shown in Fig. 4.4, and Table 4.1a presents the

FID scores for images generated from stage 1, stage 2, and reconstructed images. It is

clear that the two-stage VAE improves the visual quality of generated images for both

plastic bag and bottle classes. The images from stage 1 are nearly indistinguishable

between classes. On the other hand, the images from stage 2 are significantly sharper in

general. Although the two-stage VAE for the plastic bottle class outputs decent results,

the generated plastic bag images are more crisp. This is also observed from the FID

scores.



41

4.3.3 Binary Classification

The binary classifier employs the ResNet-50 architecture. We first generate 10, 000

images of both plastic bags and bottles. Then, we label images as either “good” or

“bad” using the visual quality of each image. We then build two separate training

datasets using 1, 200 good quality images and 1, 200 bad quality images, one dataset for

plastic bags and one for plastic bottles. The batch size is set to 16 and the epochs for

training the classifier was 50. The training results are shown in Table 4.1b. Similar to

the outputs of the two-stage VAE, the binary classifier for the plastic bag class performs

better overall. Lastly, the images classified as “good quality” are added to the existing

dataset for each class.

4.3.4 Multi-class Classification

To quantify the impact of the generated images, three different types of datasets are

created as follows. Each dataset contains 3, 000 images so only the compositions of the

datasets are different among them.

1. Real dataset: only includes the real images from the original data collection.

2. Generated dataset: consists of the images which are generated from the two-stage

VAE and filtered by the binary classifier.

3. Mixed dataset: consists of 50% images from the real dataset and 50% from the

generated dataset.

For each class, 3 multi-class classifiers are trained separately with each dataset. The

batch size is 100, and the epoch is 30 for all training processes. Test images are 300

real images for each dataset, and the images are not shown to the classifiers during the

training processes. In total, 6 multi-classifiers are trained, and the results are shown in

Table 4.2.

In both plastic bag and bottle classes, the classifiers trained with the generated

dataset and the mixed dataset generally outperform the ones trained with the real

dataset. Recall and F1 score are improved up to 18% and 11%, respectively, in the

plastic bag case. Precision becomes 4% more accurate in the plastic bottle case. For

the underwater trash detection problem, therefore, the results point to the viability of
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using the proposed approach to augment an existing yet small dataset with generated

imagery using a two-stage VAE.

4.4 Conclusion

We present an approach to address data scarcity problems in underwater image datasets

for visual detection of marine debris. The proposed approach relies on a two-stage VAE

and a binary classifier to evaluate the generated imagery for quality and realism. Our

results show that the generated data can be used to augment real datasets. This ap-

proach will not only be valid for the underwater debris problem presented in this paper,

but it will also be useful for any data-dependent task for which collecting more images

is infeasible or challenging at best. In the next chapter, we take one step further and

introduce our method for generating synthetic images and corresponding annotations

simultaneously.



Chapter 5

Image Blending for Underwater

Robotic Detection

Although recent breakthroughs in machine learning and computer vision have advanced

robotic perception in degraded environments, the detection of underwater debris re-

mains an open problem because of its visually challenging nature and scarcity of data

to train sufficiently accurate deep detection models. This chapter presents a novel image

blending pipeline, IBURD, that creates realistic synthetic images and their pixel-level

annotations using target background images, source objects images, and the objects’

annotations, to provide training data for deep learning detection models. We train

instance segmentation models only using synthetic datasets and measure their perfor-

mances on a robotic platform in pool and ocean environments to evaluate our proposed

method, which is introduced in detail in the following sections.

5.1 Related Work

Recent advances [94, 95] in deep learning have vastly improved object detection and

instance segmentation results in the terrestrial domain. Such progress has been achieved

by developing effective designs of models and training them with large datasets [65,

96] containing millions of images and corresponding labels. Even with such advances,

detecting underwater debris still remains challenging. While [29] presented the first

deep learning-based approach to detect underwater debris and outperformed previous

43
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non-deep learning approaches, the accuracy was worse than general object detection

tasks due to their small-size dataset. To increase the debris detection accuracy, [30]

proposed a larger dataset, TrashCan, which has both bounding box and pixel-level

annotations for object detection and instance segmentation along with baseline results

using Mask R-CNN [69] and Faster R-CNN [57]. However, increasing the dataset size to

improve debris detection accuracy further is not scalable due to debris data scarcity and

labeling costs. To overcome the data scarcity issue, [31] proposes a generative method,

augmenting the existing dataset with synthetic underwater debris images. While the

method can create realistic synthetic images, it still requires additional labeling efforts

to be used for training detectors.

Style transfer [97, 98] is an approach for changing the appearance of one image based

on the visual style of another. [99, 100] use this to improve detection on images taken

from various domains (e.g., different light conditions and image clarity). They aim to

account for low-level texture changes in images by updating them to have the same

style throughout the data. [101] also attempts to improve detection using style transfer,

by having the detector learn high-level features (e.g., object shape) instead of low-level

features (e.g., the texture of paintings). [102] uses style transfer to simulate various types

of noise that may be present in real-world data. [103, 104] use style transfer to imitate

varying light conditions. Style transfer has been applied beyond RGB images; e.g.,[105]

converts RGB images from COCO dataset [65] to thermal images and uses them to

train a thermal image detector. However, style transfer only produces data consisting

of annotations with the same scale, locations, and backgrounds as source images, since

it merely changes the appearance of existing images. As a result, this makes detectors

trained using the images from style transfer approaches prone to overfitting with respect

to object scales, locations, and backgrounds.

Unlike style transfer, image blending-based methods allow placing of source image

patches anywhere on target background images. [2] introduces Poisson editing using

Laplacian information to smooth the boundary between the image patches and target

images. Recently, [106] uses a GAN-based approach for image blending, producing

realistic images; however, it requires image pairs of empty backgrounds and objects

placed in the backgrounds to train, limiting its use when the source data is limited.

[107] modifies [2] to find spaces within a given image plane to blend an object. However,
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Poisson Image Editing Deep Image Blending IBURD (Ours)

Figure 5.1: Comparison of generated images using three approaches: Poisson image editing [2],
Deep image blending [3] and our method, IBURD. In our approach, we can successfully prevent
over-stylization of the blended objects.

detectors trained with their synthetic data show degraded performance on real data due

to the style discrepancy between the blended objects and backgrounds in the dataset.

[108] uses a harmonization blending approach to create new data for aerial search and

rescue, but it does not blend the boundary of target objects. [3] presents a two-stage

deep network-based approach to blend the image, generating better-blended images.

They also claim to not need additional training data unlike [106]. The proposed method

is mainly used for artistic purposes and and struggles with blending transparent source

images to background images as seen in Fig. 5.1. The method is only tested with 20

images and takes approximately four minutes for blending one object in a 512 × 512

sized image.

Our proposed approach, IBURD, allows us to place source images at various loca-

tions and scales in target background images with relevant bounding box and pixel-level

annotations within 50 seconds, which is five times faster than [3]. Our method can tackle

the task of blending transparent objects by using Poisson editing, which previous meth-

ods fail to address. Additionally, it deals with object distortion in style transfer using

Fast Fourier Transform (FFT) [109] based weight adjustment for loss.

5.2 Methodology

IBURD (Fig. 5.2) uses a two-pass process similar to [3], where the two passes are Poisson

editing and style transfer. Poisson editing blends an object onto a background, and style
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Target Background

Source Object

Pixel-level Annotation

Inputs First Pass
Poisson Editing

Second Pass
Style Transfer

Figure 5.2: Illustration of the IBURD pipeline: The source image with its pixel-level annotation
and background image are fed as inputs to the first pass. The first pass resizes and rotates
the source object and selects a location for blending it. Poisson editing smooths the boundary
between the blended object and the background. The second pass changes the style to produce
the final image. In the zoomed in region of the object the style difference between appearance
of first and second pass image is visible.

transfer changes the appearance of the object. Our pipeline takes the background image,

the object image, and the object’s pixel-level annotation as inputs.

In the first pass, we randomly resize and rotate the object image along with its

annotation. To place the object image in the background, we split the given background

image into a grid and place the object image in a randomly selected cell within the

grid. We then use Poisson image editing [2] for blending, eliminating drastic boundary

gradient changes between the object and the background.

Next, we feed the output from the first pass and the background image to the

second pass, which reconstructs the first pass output to reflect the background style

(i.e., underwater appearance). For this, we use the total loss (Eq. 5.4) consisting of

three different loss functions: style loss (Eq. 5.1 [110, 3]), content loss (Eq. 5.2 [110, 3]),

and total variation loss (Eq. 5.3 [111, 3]). Style loss compares the background and

the reconstructed image. The content loss reflects the differences between the blended

image from the first pass and the reconstructed image.

In Eq. 5.1 and 5.2, Ir is the reconstructed image after optimization, Ib is the original
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First Pass Style loss weight = 800 Style loss weight = 1500 Style loss weight = 15000

Figure 5.3: Generated image samples before and after the second pass: With the increase in
weight, the distortion of object boundary increases. Generated images using various weights are
compared with the output of first pass, which does not have any distortion due to style transfer.

background image, Ifp is the output from the first pass, L is the number of convolu-

tion layers, Nl is the number of channels in activation, Ml is the number of flattened

activation values used by each channel, Fl is an activation matrix computed from deep

network F at layer l, Gl = FlF
T
l is the gram matrix, αl and βl are the respective weights.

Lossstyle =
L

∑
l=1

βl

2N2
l

Nl

∑
i=1

Ml

∑
k=1

(Gl[Ir] −Gl[Ib])2ik (5.1)

Losscontent =
α

2NLML

NL

∑
i=1

ML

∑
k=1

(FL[Ir] − FL[Ifp])2ik (5.2)

Using style and content loss together prevents the object from being over-stylized.

The style and content loss are computed using VGG-16 [112] network’s layers. Specif-

ically, style loss uses layers relu1 2, relu2 2, relu3 3, and relu4 3 (L = 4). Content loss

uses layer relu2 2 (L = 1). In addition, total variation loss preserves the low-level fea-

tures in an image. In Eq. 5.3, I is the reconstructed image. Im,n denotes the entry on

m
th

row and n
th

column.

Losstv =

H

∑
m=1

W

∑
n=1

∣Im+1,n − Im,n∣ + ∣Im,n+1 − Im,n∣ (5.3)

Losstotal = λLossstyle + µLosscontent + νLosstv (5.4)

In Eq. 5.4, λ represents the style loss weight, µ represents content loss weight, and
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Blurriness Score = 0 Blurriness Score = 3 Blurriness Score = 5 Blurriness Score = 8

Figure 5.4: Sample images used in the survey to quantify blurriness. The scores obtained by
the survey are shown under respective images. A lower score signifies clear image and a higher
score corresponds to increased blurriness.

ν represents total variation loss weight.

With typical style transfer approaches [3, 106] developed for artistic purposes, the

total loss (Eq. 5.4) distorts the object boundaries when higher style loss weights (e.g.,

λ = 15000 in Fig. 5.3) are used on a blurry background image. However, images for

training detectors need to maintain the object’s content while reflecting the blurriness

of the background. In other words, the style loss weight must be regulated to account

for background quality while not losing the object shape completely. To achieve this,

we use FFT [109] to use spatial frequency as a measurement of image blurriness. After

applying FFT to the background image, its mean value from the newly transformed

image is computed, which acts as an indicator of blur – the higher the value, the clearer

the image.

Since the blurriness of an image is a subjective measure among individuals, it is

difficult to map the blurriness to a style loss weight (λ) directly. We use a survey to

validate the correlation between a FFT measure and the perceived blurriness in an

image. We conduct the survey with 10 participants who were asked to rate 10 images

(Fig. 5.4) on a scale of 0 to 10 (0 being clear and 10 being extremely blurry). We verify

the correlation between the survey and FFT mean scores, and map the ranges of FFT

mean values to four style loss weight values via empirical evaluations (Table 5.1).

Along with the blending process, the annotation information on the newly recon-

structed image is generated by translating and transforming the original annotation

coordinates based on the blending location. This information is collected in COCO

format, suitable for training common object detectors.
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Table 5.1: Blurriness-based style loss weights

FFT mean value Avg. survey score Style loss weight λ

mean>= 40 0 30000
40 >mean>= 10 1.4 15000
10 >mean>= 0 4.5 1500

0 >mean 7.5 800

Table 5.2: Data distribution of source object images

Class name Number of source images

Bag 7
Bottle 6

Glass Bottle 5
Cup 8
Mug 10
Can 9

Starfish 2

5.3 Experiments

5.3.1 Data Collection

To evaluate IBURD’s efficacy, we start by collecting source images of objects on the

ground. We use seven different classes of commonly found objects in marine debris,

giving us a total of 47 source images, and their distribution across classes is shown in

Table 5.2. We then manually annotate the images, providing class labels, bounding box

and segmentation information. We use two types of background images for blending,

one from the open sea and other from swimming pools. We collect seven images taken

at different locations from our experimental pool, and add three pool images from online

sources to add more variety. In the case of the sea background, we use 10 background

images sourced from the Internet.
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5.3.2 Image Blending and Data Generation

To generate a diverse dataset, we use four different rotations (0
◦
, 90

◦
, 180

◦
, 270

◦
) and

four different sizes (96 × 96, 128 × 128, 192 × 192, 256 × 256) for the 47 source object

images. The background image and the final blended image are of size 512 × 512. We

determine the object location by randomly selecting one section within the grid on

the background image plane. For multi-object blending, we divide the background (size

512×512) into 2×2 grid considering the maximum size of source images (i.e., 256×256).

For the single object case, the image plane is divided based on the current source image

size (i.e., 4 × 4 grid for image size 96 × 96 and 128 × 128, 2 × 2 grid for image size

192 × 192 and 256 × 256). By using various locations, rotations and scales, we create

images with up to four objects blended in the same background.

For the sea backgrounds, we create 1, 880 images with one object, 2, 209 images with

two objects, 3, 008 images with three objects and 4, 096 images with four objects making

a total of 11, 193 images for training. Similarly, in the case of pool background, we create

1, 880 images with one object, 2, 209 images with two objects, 2, 396 images with three

objects and 1, 731 images with four objects, giving a total of 8, 216 images for training.

We generate a smaller dataset for pool images, since it is a controlled environment and

has limited variety in the kind of backgrounds that can occur in real-world images.

For the style transfer, we use 100 iterations and L − BFGS solver for optimizing

the total loss. The content loss weight is, µ = 1, and the total variation loss weight is,

ν = 10
−6

. The style loss weight λ is based on image blurriness (Table 5.1).

5.3.3 Object Detection and Instance Segmentation

To evaluate the efficacy of our framework, we first select YOLACT [113] as an in-

stance segmentation model based on its inference speed and performance with pre-

trained weights. We choose ResNet50-FPN as a backbone of YOLACT to obtain a

reasonable inference time on the low-power mobile GPU on LoCO-AUV [4]. We train

the model with three different sets of data: synthetic pool data, synthetic ocean data,

and TrashCan data (containing actual underwater debris imagery).
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(a) LoCO-AUV used for deployment with LEDs present around the cameras.

LoCO’s Right Camera LoCO’s Left Camera

(b) The schematic of the LEDs installed on LoCO: LEDs mounted around LoCO’s left cam-
era, are used to monitor detector performance in real-time during experiments. We divide the
LEDs into seven sections and corresponding sections individually flash when relevant classes are
detected in the image frame. The colors denote the following classes: Blue-Cup, Yellow-Mug,
Red-Bottle, Magenta-Starfish, Green-Can, White-Bag, Cyan-Glassbottle.

Figure 5.5: LED indicator setup on LoCO for monitoring object detection performance.

5.3.4 Robot Setup

We choose LoCO-AUV [4] to run the detector model with trained weights due to its

capability to run deep learning models on its mobile GPU (i.e., Nvidia Jetson TX2).

We use image frames from the right camera of LoCO-AUV to make inferences. We

adopt an LED lighting indicator system [114] (Fig. 5.5) installed on LoCO-AUV’s left

camera, to visually examine different weights’ performance during deployments. The

system consists of 40 LEDs, and we sectionalize them into seven groups. This way, a

designated group(s) of LEDs lights up when a relevant class object(s) is detected in the

current image frame. Additionally, we only use the LEDs around the left camera to
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avoid the image disruption caused by the light reflection on the acrylic shell in front of

each camera.

Figure 5.6: Sample images generated from IBURD. The first column shows images blended on
pool backgrounds. The second column contains objects blended on ocean backgrounds.

5.4 Results

We generate images with various ocean and pool backgrounds(Fig. 5.6). Note that we

do not lay much emphasis on the quantitative evaluation of the images themselves,

since the scope of this work is not to improve the appearance of images for aesthetic

purposes, but to create an effective dataset for training robust visual debris detectors.

The desired properties of generated images are a smooth transition border between the
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(a) Raw input images (b) Visualization of detec-
tion

(c) Detection response using
LEDs

Figure 5.7: The first row consists of real images from the ocean in Barbados. The second row
contains real images from pool. (a) shows the raw images from the perspective of the camera
on LoCO-AUV [4]. These images are used as input for the detector network. (b) visualizes
the segmentation mask and bounding box predicted by the detector. The network detects the
objects with high confidence scores. (c) shows the LED response in real-time. In the ocean
image (first row) in (c) cup, starfish, and can are visible with their respective LED colours blue,
magenta, and green. In the pool image (second row) in (c) bag and bottle are present with their
LED indicating their class colours, white and red.

object and background images and the preservation of the object’s content. Our pipeline

is able to account for these properties and remove the background in the source object

image completely from transparent (e.g., plastic bottles) and translucent objects (e.g.,

glass bottles and plastic bags) (Fig. 5.1). Additionally, the objects do not get heavily

distorted even when other objects exist in the background (e.g., coral reefs in Fig. 5.6).

IBURD achieves five times faster runtime compared to the recent work, Deep Image

Blending method [3]. Our method can generate an image with one object in 25 seconds.

The runtime increases as more objects are blended in the background, reaching up to

50 seconds for four objects.

We train a detector on synthetically generated datasets and deploy it on LoCO-

AUV [4]. We conduct experiments in pool and ocean environments as explained in

Sec. 5.3. The detector performs at 1-3 frames/second (FPS) on Nvidia Jetson TX2, and

we monitor detector output through the LED indicator. The detector successfully infers

object classes, which are in the training datasets, during pool and ocean deployments
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Figure 5.8: Demonstration of detector performance on real-world images: Images in each row
are samples from three different sources (i.e., Ocean, Pool, and TrashCan). Columns correspond
to detector weights trained on ocean synthetic (wocean), pool synthetic (wpool), and TrashCan
(wTrashCan) datasets. For each weight, the performance is evaluated on all three sample images.
The detector performs best when the sample images are from a similar or the same environment
as the training dataset.

(Fig. 5.7). We also evaluate the performance of detectors trained with three different

datasets (i.e., synthetic ocean, synthetic pool, and TrashCan) using images from three

different environments (i.e., Ocean, pool, and TrashCan), in total nine cases (Fig. 5.8).

When the detector is trained and tested with images from the same environments,

objects are inferred correctly. Real images from ocean, pool, and Trashcan are tested

on the detector with weights wOcean, wPool, and wTrashCan, respectively. However, if

the weight and sample image pairs are from different environments, the detector shows
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degraded performance or completely fails to detect objects. This demonstrates the

necessity of using relevant datasets for target environments. In our experiments, we

show IBURD can generate realistic synthetic datasets for pool and ocean environments

without using any real images of objects in the target environment. We also demonstrate

that the detectors trained with synthetic datasets which have similar visual features to

a target environment perform better than ones trained with publicly available datasets

if the target environment is known a priori.

5.5 Conclusions

In this chapter, we present an image blending pipeline, IBURD, that generates syn-

thetic images using source object images, their annotations and background images via

a two-pass approach. Advantages of our pipeline include the capability to handle trans-

parent source object images without creating artificial borders between the object and

background. Additionally, the pipeline uses the blurriness score to dynamically syn-

thesize source and target background images, resulting in the creation of more realistic

synthetic images than previous methods. Our approach also provides pixel-level an-

notations for each synthetic image, eliminating the labor-intensive dataset annotation

process. Our results show that the synthetic data-trained models can accurately detect

objects without being trained on any real data which includes those same objects. This

demonstrates that our pipeline enables training of object detection and instance seg-

mentation networks suitable for the data-scarce underwater debris detection problem.

This is the last chapter of Part I. We will move to Part II where we introduce our

research for robotic exploration and localization.



Part II: Robotic Exploration and

Localization for AUVs

Unlike terrestrial and aerial robots, underwater robots frequently encounter unknown

environments as the aquatic domain is very sparsely mapped. Hence, robotic localization

in such environments is extremely difficult. Additionally, to navigate safely, robots are

required to approach objects cautiously. However, existing algorithms are incapable of

adjusting distances to objects, leading to inefficient exploration and hampering search

operations by colliding with obstacles. To address this issue, Part II provides methods to

localize AUVs and navigate underwater, and it is composed of two chapters. Chapter 6

proposes to fuse depth and instance segmentation information with an artificial potential

field algorithm (APF), which makes it possible for robots to keep flexible distances to

objects (i.e., avoiding or approaching) during exploration. After detecting underwater

debris during exploration, accurate localization of AUVs is essential to estimate the

location of detected debris. However, underwater localization is a challenging and open

problem due to the unique challenges AUVs face. GPS and other forms of electronic

communications are either completely unavailable or limited to extremely short ranges

underwater. Chapter 7 presents a low-cost localization approach for an AUV by fusing

bathymetry data of underwater environments with depth and altitude data from an

AUV.
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Chapter 6

Stereo Visual Obstacle Avoidance

using Semantic Information

Mobile robots in unstructured environments must rely on an obstacle avoidance module

to navigate safely. The standard avoidance methods measure the locations of obstacles

with respect to the robot but are unaware of the obstacles’ semantics. Consequently, the

robot cannot exploit the semantic information about obstacles when making decisions

about how to navigate. In this chapter, we introduce an efficient obstacle avoidance

algorithm for robots combining semantic information and depth estimation
1

from a

stereo vision system. The following sections describe our approach in detail.

6.1 Related Work

6.1.1 Instance Segmentation

Research in object detection has studied models to improve accuracy while keeping real-

time inference speed since the appearance of YOLO [56], one of the first real-time object

detection models. However, instance segmentation poses more complex challenges, and

achieving good accuracy in real-time has been difficult. FCIS [115] is the first end-

to-end CNN-based model for instance segmentation. It is built on R-FCN [116] and

1
The term “depth estimation” in this chapter refers to the method which restores the distance in

the third dimension from a given 2D image.
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utilizes position-sensitive inside/outside score maps to generate instance segmentation

proposals. Mask R-CNN [69], which is an extension of Faster R-CNN [57], performs seg-

mentation in a two-stage process by generating Region of Interest (RoI) proposals first

and then creating a mask based on the RoI from the first stage. PANet [117] improves

the accuracy of segmentation from Mask R-CNN by enriching information propagation.

MS R-CNN [118] outperforms Mask R-CNN by adding a MaskIoU head to align the

scores of the masks. Although the aforementioned models show accurate results, their

two-stage-based structures make real-time instance segmentation infeasible. In order to

overcome the structural problem, YOLACT [113] conducts two predictions in parallel:

mask prototypes and per-instance mask coefficients. Then, the predictions are combined

linearly to yield masks. This allows a single-stage structure and inference in real-time

with reasonable accuracy.

6.1.2 Obstacle Avoidance

Obstacle avoidance, unsurprisingly, has seen significant development (e.g., [119, 120,

121]) given its importance in safe robot navigation. Here, we focus specifically on

sensor-based approaches where no information about the environment is available be-

yond what is received from sensors (see [122] for a complete discussion). Sensor-based

approaches typically plan a short-horizon trajectory at every time step [123, 124]. A

classic obstacle avoidance technique is the Artificial Potential Field, first proposed by

[125]. This technique assigns artificial repulsive fields to obstacles and attractive fields

to goals, thereby guiding the robot toward a goal while simultaneously avoiding obsta-

cles. Other approaches include vector field histograms (VFH) [126], receding horizon

control [127], and Voronoi diagrams [128].

Most obstacle avoidance that incorporates semantic information is focused on de-

veloping socially-aware responses to human obstacles (e.g., [129, 130, 131]). Similar to

our approach, [130] instructs the robot to avoid humans more than inanimate objects.

However, their work is focused on path planning in mapped environments and uses

model-based methods to estimate the human’s location.

Another approach for obstacle avoidance in marine robotics, based on conditional

imitation learning, is presented in [121]. This approach uses data collected from expert

users to learn what navigational action to take given an input image but does not
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explicitly model different behaviors for different types of obstacles.

Figure 6.1: Illustration of our obstacle avoiding approach which fuses depth and semantic in-
formation for selective avoidance. The input is a pair of stereo images, which is used to both
compute disparity and, through YOLACT, generate semantic labels for obstacles in the scene.
Fusing these, a robot has both depth estimates and semantic information about potential ob-
stacles, enabling it to select navigation strategies depending on the nature of the obstacle.

6.2 Methodology

The proposed approach incorporates both instance segmentation and depth information

to intelligently avoid obstacles in unstructured and dynamic environments, with the

goal to optimize robot paths (e.g., in terms of distance traveled, energy spent, and

time taken) without compromising obstacle avoidance capabilities. The system obtains

object labels and pixel locations from instance segmentation and fuses the information

with depth information to assign clearance distances to obstacles.
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Figure 6.2: Examples of labeled training images from our underwater dataset showing three
classes: diver, robot, and fin (the colors for each class are randomly selected per image).

6.2.1 Information Fusion using a Stereo Camera

We use a stereo camera as our only sensor to acquire (1) pixel-level masks and labels

of each object using instance segmentation, and (2) depth information. Once both are

acquired, we fuse them to provide semantic information to an obstacle avoidance module

(see Fig. 6.1).

Instance Segmentation with Transfer Learning

We choose YOLACT [113] as the base instance segmentation module due to its real-time

inference and competitive accuracy. We use ResNet50-FPN as a backbone network for

achieving maximum inference speed since robots are likely to use low-power computation

units (e.g., an Nvidia Jetson TX2) to perform semantic inference. We collect a total

of 2, 263 images, of which 1, 682 are labeled with diver, robot, and fin (i.e., diver’s

flippers) classes; see Fig. 6.2 for training images labeled using the Supervisely [71] tool.

In addition, we use 581 images from the SUIM dataset [132] which has diver, fish, and

robot classes. We refine a pre-trained YOLACT model, initially trained with the MS

COCO dataset [65], with this additional data.
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Depth Estimation

Our depth estimation process is as follows:

1. We perform stereo rectification to obtain a transform matrix R, projection matrix

P, and disparity-to-depth mapping matrix Q for each camera using a camera

matrix K and distortion parameters D from each camera, a rotation matrix R

between the first camera coordinate and the second camera coordinate, and a

translation vector T between two cameras.

2. Next, we remove distortion from each image using the K, D, R, and P matrices.

3. After rectifying each pair of images, we run stereo matching to generate a disparity

map.

4. Lastly, we estimate the depth information from the disparity map using Q.

6.2.2 Obstacle Avoidance

Our obstacle avoidance algorithm is inspired by the Artificial Potential Field (APF)

method [125]. APF uses an attractive potential fa to guide the robot toward the goal

and a repulsive potential fr to push the robot away from obstacles. The attractive

potential is calculated as:

fa(x) = c(∣x − xg∣)2 (6.1)

Here c is a scaling constant, x is the current robot position, and xg is the goal

position. The repulsive potential is calculated as

fr(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

η( 1
p(x) −

1
d0
)2 if p(x) ≤ d0

0 if p(x) > d0
(6.2)

where η is a constant, p(x) is the closest obstacle to the position x, and d0 is the

largest distance from the obstacle at which the robot can sense the obstacle’s repulsive

force.

In our approach, we determine d0 based on semantic information about the obstacles.

For instance, we assign d0 = 0 for objects we can ignore (e.g., bubbles or sports balls)
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while assigning a larger value for the objects (e.g., coral reef, robots, people) we intend

to avoid. In our approach, unlike APF, the robot navigates around the boundary

of an obstacle, keeping a constant distance of d0 from the obstacle (Fig 6.3). The

circumnavigation behavior is similar to the bug-2 navigation algorithm [133]. The robot,

however, may face the challenge of maintaining fixed distances (i.e., d0) from obstacles

when circumnavigating due to errors in state estimation and external forces (e.g., surge

for underwater robots operating in open waters and wind for aerial robots).

We introduce two unit vectors, â and r̂, to implement the circumnavigation with

the concept of attractive and repulsive potentials from APF. â points from the robot

towards the goal and r̂ points from the robot to the obstacle. With the two vectors, we

update the robot’s direction of movement v̂ at any given point as follows:

v̂ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

â if ∣xo − x∣ > d0
â + c1c2r̂ if ∣xo − x∣ ≤ d0

(6.3)

where c1 is defined as a negative dot product between â and r̂, and c2 is an additional

factor to keep the distance d0 between the robot and the obstacle.

c1 = −â ⋅ r̂ (6.4)

We introduce the constant c1 to make v̂ perpendicular to r̂ when the distance between

the robot and the obstacle is d0. However, due to the robot’s momentum, the robot

may still approach closer than d0 to the obstacle. We use the additional factor c2 to

scale the repulsive component c1r̂ and to enforce distance d0 from the obstacle:

c2 =
1 − b

d0
∣xo − x∣ + b (6.5)

Here xo is the obstacle position, x is the robot position, and b is a constant greater

than 1 that represents the maximum value c1r̂ can be scaled by. c2 scales inversely with

the robot’s distance to the obstacle, and obtains a value between 1 and b as we approach

the obstacle.
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Figure 6.3: Example trajectories of a robot around an obstacle using the proposed approach.
The repulsive potential r̂ affects the robot only if d ≤ d0. The position of object O is represented
by a cross, the goal position G by a square, and the position of robot R over time with stars.
(left): when the obstacle is not along the direct path from the robot to the goal, it does not
affect robot navigation. (right): the robot’s direct path to the goal brings it closer than d0
distance to the obstacle; our algorithm forces the robot to circumnavigate around it.

6.3 Experiments and Results

The ongoing COVID-19 pandemic prohibited field trial validations of the proposed

method. However, we use realistic simulation using ROS Gazebo [134] worlds for both

terrestrial and underwater cases to validate our algorithm. Because our goal is local

navigation of unstructured, mapless environments, we choose goal points for each case

with one condition: the goal point should be something visible to the robot when the

robot is at its starting position if there is no obstacle between the robot and the goal

points. Additionally, we use a mobile GPU (Nvidia Jetson TX2) with a stereo camera

(Intel RealSense) to evaluate the performance of our model to mimic realistic robotic

hardware.

6.3.1 Simulated Terrestrial Trials

We have created a terrestrial world in Gazebo, simulating a parking lot environment.

The scene was chosen to mimic a robot attempting delivery or curbside pickup from a

departmental store, a relatively common occurrence in many parts of the world under

the Coronavirus pandemic. The world has various types of objects, including sports

balls, cars, buses, people walking or standing, and tables. We evaluate our model on a
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(a) Terrestrial exploration with SOAR. (b) Terrestrial exploration without SOAR.

(c) Underwater exploration with SOAR. (d) Underwater exploration without SOAR.

Figure 6.4: Samples from the terrestrial and underwater simulation tests. In Fig. 6.4a and 6.4b,
the Turtlebot moves from the bottom left corner to the upper middle area. In Fig. 6.4c and
6.4d, Aqua moves from the lower middle point to the middle of the arch. Fig. 6.4a and 6.4c
show that SOAR finds more efficient paths to explore environments while avoiding significant
obstacles.
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workstation equipped with an Intel i5-8600K CPU and an Nvidia GTX 1080 GPU. We

add a stereo camera to a simulated Turtlebot robot to estimate depth and infer instance

segmentation. To validate our algorithm, we intentionally block the shortest path from

a robot to a goal point with sports balls, as shown in Fig. 6.4a and 6.4b, since we

select the sports ball category as an object the robot can safely run into (i.e., a not-an-

obstacle object). The Turtlebot starts from the bottom left corner of the world and aims

to reach the stop sign at the top. We use pre-trained COCO weights with YOLACT for

instance segmentation. We use the modified APF-based obstacle avoidance algorithm

as described in Section 6.2 under two conditions: receiving semantic information about

obstacles (SOAR) and without receiving any semantic information about obstacles (non-

SOAR). To measure the effectiveness of the semantic obstacle avoidance approach, we

measure the travel time from a starting point to a goal point to evaluate each model’s

performance by running 10 tests for each case. We also note the path chosen by the

robot in each of the SOAR and non-SOAR cases.

6.3.2 Simulated Underwater Trials

Our underwater world has been designed to mimic the ocean floor environment, includ-

ing corals, rocks, and fauna. The world includes fish, robots, and an underwater rock

arch formation. As shown in Fig. 6.4c and 6.4d, the arch is blocked by fish and robots

to test the efficacy of the SOAR approach compared to non-SOAR. We select the fish

category as a not-an-obstacle object class. We simulate the Aqua AUV [135], equipped

with a stereo camera, to test our model with both SOAR and non-SOAR algorithms.

The robot starts from the bottom of the world and aims to travel through the arch to

the other side of the rock formation. We use the instance segmentation model trained

on our own dataset (as mentioned in Section 6.2.1) with the four classes (i.e., diver,

robot, fish, and fin). The hardware and trial configurations are unchanged from that of

the terrestrial case.

6.3.3 Results

We use both quantitative and qualitative evaluation to test our semantic obstacle avoid-

ance approach, as shown in Fig. 6.4 and Table 6.2. Vision algorithms are implemented
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Table 6.1: Instance segmentation results (mAP) trained on our underwater dataset

all .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

box 71.14 91.96 90.29 89.48 87.89 84.09 79.54 75.20 62.56 39.07 11.29
mask 69.38 93.72 93.51 92.14 90.47 85.64 81.71 69.39 55.94 29.55 1.71

using the OpenCV [136] library.

Instance Segmentation

We train the instance segmentation model on a dataset of underwater imagery we col-

lected, and also one that is openly available, as mentioned in Section 6.2.1. We train

for 800, 000 epochs which took five days on an Nvidia Titan XP GPU. Table 6.1 shows

the average mAP (Mean Average Precision) score over IoU (Intersection over Union)

thresholds from 0.50 to 0.95. With higher accurate localization (higher IoU thresholds),

the mAP values decrease. Overall, the mAP values of bounding boxes are slightly higher

than those of segmentation masks.

Simulated Terrestrial Trials

We achieve ≈ 20 fps while simultaneously running simulation and algorithms on the

Nvidia Titan XP GPU. Table 6.2a shows the average travel time (in simulation time)

from the starting point to the goal for both SOAR and non-SOAR algorithms. Although

both algorithms can reach the goal, the non-SOAR algorithm takes 14% longer time than

when using SOAR. Samples from each case are shown in Fig. 6.4a and 6.4b. Fig. 6.5a

and 6.5b show how Turtlebot understands scenes during its exploration. The SOAR

algorithm reduces travel time by utilizing non-obstacle information (i.e., sports ball)

obtained from the instance segmentation model. This demonstrates how instance seg-

mentation information can assist in efficient exploration while safely avoiding obstacles.

Information from bounding box detection and semantic segmentation is not sufficient

to provide detailed information for a robot to explore environments, particularly with

intra-class occlusion.
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(a) Turtlebot : Segmentation (b) Turtlebot : Disparity

(c) Aqua : Segmentation (d) Aqua : Disparity

Figure 6.5: Instance segmentation and disparity estimation from the view of robots. Fig. 6.5a
and 6.5b are captured from the Turtlebot in the terrestrial world, and Fig. 6.5c and 6.5d are
from the Aqua robot in the underwater world.

Simulated Underwater Trials

As our Gazebo world uses detailed hydrodynamic effects for the underwater simulation,

we obtain ≈ 10 fps during our tests. Unlike the terrestrial case, the non-SOAR algorithm

fails to reach the goal, as seen in Table 6.2b. This is because we terminate the non-

SOAR algorithm in the following cases: 1) Aqua is heading in the wrong direction,

2) Aqua is stuck between rocks, and 3) it takes too long (≥ 2 minutes) to reach the

goal. Sample cases from each scenario are captured in Fig. 6.4c and 6.4d. The cyan-

colored robots shown are “obstacles”, and immobile, to simulate a moving Aqua robot
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Table 6.2: Terrestrial and Underwater Simulation Trial Results

SOAR non-SOAR
Travel time(s) Goal Travel time(s) Goal

1 89 ✓ 99 ✓

2 93 ✓ 98 ✓

3 83 ✓ 120 ✓

4 90 ✓ 99 ✓

5 87 ✓ 100 ✓

6 85 ✓ 98 ✓

7 90 ✓ 101 ✓

8 88 ✓ 97 ✓

9 87 ✓ 98 ✓

10 89 ✓ 101 ✓

Avg 88.1 101.1

(a) Turtlebot

SOAR non-SOAR
Travel time(s) Goal Travel time(s) Goal

1 74 ✓ 97 ✗

2 69 ✓ 75 ✗

3 73 ✓ 88 ✗

4 70 ✓ 120 ✗

5 69 ✓ 91 ✗

6 68 ✓ 94 ✗

7 70 ✓ 122 ✗

8 72 ✓ 111 ✗

9 70 ✓ 111 ✗

10 74 ✓ 99 ✗

Avg 70.9 100.8

(b) Aqua

(silver/red colors) avoiding other robots in the field. With the SOAR algorithm, Aqua

is able to reach the goal (i.e., under the arch) by ignoring the group of fish. The system

ignores them because of the semantic knowledge that fish do not present a collision

danger. Fig. 6.5c and 6.5d show a snapshot of Aqua’s view from the trials. The results

show that for underwater domains, obstacle avoidance without understanding the scene

could significantly extend the travel time at best and fail to reach the goal at worst.

Bench Test

We achieved ≈ 5 fps inference speed while running the SOAR algorithm on the Jetson

TX2. We expect to achieve faster inference speed in more capable mobile platforms

(e.g., AGX Xavier).

Limitations

When the inference produced by instance segmentation incorrectly classifies an obstacle

as a non-obstacle, a collision can occur. Additionally, the inference time needs to be

sufficiently fast to capture the objects’ motion. In other words, if an object moves far

faster than the inference speed, it could cause the obstacle avoidance algorithm to fail.
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6.4 Conclusions

In this chapter, we propose an obstacle avoidance algorithm that incorporates both in-

stance segmentation and depth information to perceive the robot’s surroundings from

only a pair of stereo images as an input. We are able to use the instance segmenta-

tion labels to inform a robot about which visible obstacles in its environment should

be either avoided or ignored. Finally, we present our algorithm as a viable way to ex-

plore unstructured environments with the obtained visual information. We validate our

algorithm on both terrestrial and underwater simulations. Quantitative results show

that our algorithm can lead to efficient and intelligent robotic navigation decisions in

unstructured environments, which can result in extending the duration of robot opera-

tions. In the next chapter, we introduce a method to localize AUVs to roughly estimate

the location of underwater debris after detecting them.



Chapter 7

Depth-based Monte Carlo

Localization for AUVs

For AUVs to navigate and operate missions autonomously, the ability to localize is es-

sential. However, localizing AUVs underwater is a challenging and open problem due to

the challenges mentioned in Chapter 1. In this chapter, we present bathymetry-based

algorithms to localize AUVs without using pre-installed or expensive sensors. This

method uses depth data from a pressure sensor and altitude data from a single-beam

sonar as inputs; and localizes AUVs by applying four well-known Bayes filter-based

methods: the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Par-

ticle Filter (PF), and Marginalized Particle Filter (MPF). The details of our approach

are presented in the next sections.

7.1 Related Work

Underwater localization using landmark-based methods with acoustic sensors has been

widely studied. For these methods, ranging-type sonars including the single-beam pro-

filing and multi-beam varieties have been used [40]. Multi-beam and profiling sonars

collect multiple measurements, and they can give more accurate results than single-

beam sonars. Table 7.1 summarizes selected existing localization algorithms, along

with the parameters of their state vector. The vector (ϕ, θ, ψ) represents the Euler

angles, (u, v, w) is the AUV velocity in the body-fixed frame, and (bx, by) is the velocity

70
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Table 7.1: Selected existing localization algorithms

Sensors Parameters of state
vector s

Algorithms

Teixeira et al. [140] DVL,
Single-
beam sonar

b = (bx, by)
s = (x, y, b)

PF

Fairfield and Wettergreen
[138]

Multi-beam
sonar

q = (ϕ, θ, ψ, x, y, z)
s = (q, q̇, q̈)

PF

Ura et al. [137] Profiling
sonar

s = (x, y) PF

Williams and Mahon
[142]

Single-
beam sonar

q = (x, y, z)
s = (q, q̇)

PF

Meduna et al. [143] Single-
beam sonar

s = (x, y) PMF

Kim and Kim [144] Single-
beam sonar

p = (ϕ, θ, ψ)
q = (u, v, w)
s = (x, y, z, p, q)

MPF

Ours Single-
beam
sonar

s = (x, y, z) EKF, UKF,
PF, MPF

bias.

Although DVL, multi-beam sonar, and profiling sonar-based methods yield better

results than those with single-beam sonar (e.g., [137, 138, 139, 140]), such sensors can

be prohibitively expensive. Single-beam sonars use a narrow acoustic projection to

measure depth to the floor and are thus vulnerable to noise. However, they have been

widely adopted to solve localization problems since they are among the most affordable

acoustic sensors [141]. Williams and Mahon [142] proposed a localization algorithm

based on the PF, but the computational burden of the algorithm is heavy. Meduna et

al. [143] presented a point mass filter (PMF)-based algorithm, but it is limited to the

(x, y) positions of an AUV. Kim and Kim [144] used a single-beam sonar with the MPF

and estimated the 6-DOF position and orientation of an AUV along with the velocity.

However, the algorithm requires a highly-accurate IMU, which can be expensive.
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Several Bayes filter-based methods have been used to solve the localization problem

[145] with sonar data. Among Bayes filters, the EKF and UKF have seen the most use in

this domain (e.g., [146, 147]). Karimi et al. [148] showed that the EKF can outperform

the UKF when they estimate the position of an AUV by the sensor readings from

DVL and inertial navigation system (INS). However, the UKF captures nonlinearity

up to the second-order term in the state transition process [40], which in theory could

outperform the EKF in similar applications. We thus compare the performance of

EKF and UKF-based algorithms in AUV localization. Although the EKF and UKF

exhibit high accuracy under Gaussian assumptions, they often fail to converge when the

underlying distribution is multi-modal. The inherent nonlinearity of the underwater

terrain and of AUV motions underwater makes it challenging for these methods to work

reliably. To address these issues, the PF has been widely used (e.g., [149, 150, 142,

151, 152, 137, 153, 139, 154, 155, 140]). However, the PF is computationally expensive

and thus can be difficult to run on board AUVs for real-time localization. The MPF,

on the other hand, has a lower computational cost and provides similar benefits to

the PF, handling nonlinearity to some extent [156], thus making it potentially useful

for underwater localization (e.g., [157, 144]). Despite the strong potential shown by

the above studies, localization with bathymetry data considering 3-DOF state vectors

and using four Bayes filter-based algorithms (EKF, UKF, PF, and MPF) is yet to be

extensively studied. The existing studies were conducted on diverse types of robots,

and it is infeasible to do a fair comparison of the algorithms.

7.2 Problem Formulation

Localizing an AUV is a challenging problem, as mentioned in Chapter 1. Given bathymetry

data of a target environment and measurements from AUV onboard depth and single-

beam sonar sensors, we aim to localize an AUV with Bayesian filters (Fig. 7.1). Bayesian

filters require motion and measurement models to estimate system states using the well-

known propagate-predict-update process. We propose linear and mixed AUV motion

models for updating the AUV position and a measurement model for collecting the

depth and range measurements at each location. The motion models and measurement

model are subsequently used to obtain AUV state estimates. To evaluate each filter’s
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t=N t=N+1 t=N+2 t=N+3 t=N+4

Figure 7.1: An example scenario of an AUV traveling underwater: A variation in the floor (light
brown) is used to localize the AUV using depth (red) and range measurements (blue) at each
time step t with our proposed approaches.

ability to estimate both linear and nonlinear states, we choose to use a linear and mixed

motion model for the AUV. We use these models to analyze the performance of each

filter in different water environments.

7.2.1 Motion Model

A general discrete time state-space model can be represented as Eq. 7.1 to formu-

late the AUV localization problem where xt is a state vector, ut is a control in put,

and yt is a measurement. In our work, only the 3D position of an AUV is included

in the state vector. f and h can be either linear or nonlinear functions. qt and rt

represent the noise from motion and measurements. We assume the noise is normally

distributed [140, 143, 144]. The model in Eq. 7.1 is used for the EKF, UKF, and PF-

based localization algorithms. The model for the MPF-based localization algorithm is

introduced in Section 7.3.4.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xt = f(xt−1, ut) + qt

yt = h(xt) + rt

(7.1)
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The state vector and control inputs are defined as follows:

xt = [px,t py,t pz,t]
T

(7.2)

ut = [vx,t vy,t vz,t]
T

(7.3)

where p = [px,t py,t pz,t]
T

are the x, y, and z components of the robot’s position

in three-dimensional space at time t. We also use the term ‘pose’ to refer to the state

vector xt. The AUV motion models are defined in Eqs. 7.4 and 7.5.

Linear motion model

All state variables are updated linearly.

f(xt, ut) = xt + ut ∗ dt (7.4)

Linear/Nonlinear mixed motion model

Underwater current often causes an AUV to deviate from its original trajectory, which

generates irregular movements of the AUV. To simulate such movements without using

the Euler angles [158] explicitly, we propose a linear/nonlinear mixed motion model us-

ing the bathymetry data. Among the three state variables in the state vector (Eq. 7.2),

px,t and py,t are updated based on the altitude L(px,t, py,t) at position (px,t, py,t). There-

fore, this model will cause an AUV to have faster motions in x and y directions from

positions with higher altitudes. Unlike the other two variables, the state variable pz,t is

updated linearly as in the linear motion model. In Eq. 7.5, a, ad, aoff , b, bd, and boff

are constants specific to each water body such that the AUV is able to navigate in each

without collision with their “shorelines”.

f(xt, ut) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

px,t + a[L(px,t,py,t)
ad

+ aoff]dt
py,t + b[L(px,t,py,t)

bd
+ boff]dt

pz,t + vz,t ∗ dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.5)
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pz,a,t

pz,t

pz,a,t

pz,t

(px,t, py,t, pz,t)

L(px,t, py,t)

L(px,t, py,t)

Figure 7.2: Visual representation of AUV location in a body of water. The surface and bottom
of the body are indicated by the dashed black lines. L(px,t, py,t): height, pz,t: depth, pz,a,t:
altitude at (px,t, py,t), (Left): LoCO deployed in an open water environment, (Right): LoCO
simulated in Gazebo.

7.2.2 Measurement Model

The measurement function h is the same for both the linear and mixed models.

h(xt) = [pz,t pz,a,t = L(px,t, py,t) − pz,t]
T

(7.6)

L is bathymetry data (depths for each x and y location on a grid), pz,t represents

the depth of the AUV from the surface measured by the pressure sensor, and pz,a,t

represents the range measurement of the single-beam sonar on the AUV. Therefore, the

sum of pz,t and pz,a,t is the altitude L(px,t, py,t) at the position (px,t, py,t) as shown in

Fig. 7.2.

7.3 Methodology

To solve the underwater robot localization problem under highly nonlinear perturbation

of AUV motion (Eq. 7.5), nonlinear Bayes filter algorithms are essential. The EKF

and UKF are widely used to handle nonlinear state estimation with the assumption

that the state variables follow the Gaussian distribution, but they could fail when the

distribution is not Gaussian [159]. The PF [149] is resilient to various types of noise,
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but it is computationally expensive. The MPF [155] uses the PF for nonlinear state

variables and the KF for linear state variables because the KF is an optimal filter for

estimating linear state variables.

7.3.1 Extended Kalman Filter

To approximate a nonlinear system, the EKF takes the first-order of the Taylor series

expansion [160]. Linear matrices in the KF are replaced with the Jacobians to make

predictions. The Jacobians for the mixed motion model in Eq. 7.5 and the measurement

model in Eq. 7.6 are shown in Eq. 7.7 and Eq. 7.8, respectively. The EKF requires

the following inputs: state vector, state covariance, control input, and measurements.

With these inputs, the EKF uses the following well-known two-step approach:

• Prediction Step: In this step, the state vector is updated based on the motion

model and control input. Once it is updated, the Jacobian, state covariance, and

noise covariance are used to find the state vector and state covariance matrix for

the next time step.

• Correction Step: The Kalman gain is calculated using the Jacobian, state covari-

ance, and measurement noise covariance matrices. The calculated Kalman gain is

then used to refine the state vector from the prediction step.

The EKF assumes that state variables follow a Gaussian distribution with a single mode.

Due to this assumption, the EKF is computationally efficient, and each update takes

O(d3) where d is the dimension of the state xt [161]. The EKF is directly applied to

Eq. 7.1 for linear and mixed motion cases to localize AUVs using the depth and range

measurements.

Ft =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + a
ad
[∂L(x,y)

∂x
]dt a

ad
[∂L(x,y)

∂y
]dt 0

b
bd
[∂L(x,y)

∂x
]dt 1 + b

bd
[∂L(x,y)

∂y
]dt 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.7)

Ht =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1
∂L(x,y)

∂x

∂L(x,y)
∂y

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.8)
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7.3.2 Unscented Kalman Filter

The UKF [162] is another approach to estimate a nonlinear system using the Unscented

Transform instead of the Taylor series. It uses a sampling approach to capture the mean

and covariance of Gaussian random distributions. Then, the UKF propagates the points

through the true nonlinear system. In this way, the UKF can handle higher degrees of

non-linearity than the EKF. The UKF requires the same inputs as the EKF, along with

some additional parameters, namely n, α, β, and κ, described below. Like the EKF, the

UKF has a two-step estimation process:

• Prediction Step: The UKF chooses 2n+ 1 sigma points from the Gaussian distri-

bution where n is the number of dimensions. The UKF then passes these sigma

points through the motion model f . The parameters α, β, and κ are used to

determine weights for each sample and the distribution of the sigma points.

• Correction Step: The state vector from the prediction step is used to generate

sigma points. Their measurements, noise covariance, and state covariance matrices

are used to calculate the Kalman gain. As in the EKF, the state vector is updated

using the Kalman gain. With this, the UKF approximates a Gaussian distribution

with the sigma points.

In this way, the UKF can create a more accurate approximation of the Gaussian

distribution than the EKF. Since the estimation is based on the Gaussian distribution

assumption, it may not work for multi-modal distributions. In most cases, the UKF

shows notable improvements compared to the EKF. The computational complexity of

the UKF is close to the EKF [161]. The UKF is also directly applied to Eq. 7.1 for

linear and mixed motion cases.

7.3.3 Particle Filter

The PF [152] implements the Bayes filter algorithm using sequential Monte Carlo meth-

ods. Unlike the EKF and UKF, the PF does not require any assumptions regarding the

distribution. Instead, it uses N particles, representing potential locations of the state

xt, to approximate the distribution of the state xt. The more particles there are, the

more accurate the approximation of the distribution. The PF can handle distributions



78

Algorithm 1 Depth-based PF Localization

1: D-PFL main
2: L = Target waterbody
3: N = The number of particles
4: xinit = Initial pose of a robot
5: x1 = Initialize around pose(L,N)
6: zt = Sensor measurements.
7: ut = Control input
8: for t = 1, ..., T do
9: xp = xt

10: for m = 1, ..., N do
11: x(m, ∶) = motion update(ut, xp(m, ∶), L)
12: w(m) = sensor update(zt, x(m, ∶), L)
13: end for
14: wtotal = sum(w)
15: for m = 1, ..., N do
16: w(m) = w(m)/wtotal

17: end for
18: xt = resample particles(x(m, ∶), w, L, rand)
19: wt = w
20: est pose = PFL get pose(xt, wt)
21: end for
22: return est pose

with high nonlinearity and multiple modes. However, the computational complexity of

the PF for each update is O(Nd2) where d is the dimension of the state xt, meaning

that the runtime of the PF scales linearly with the number of particles used. When

N is much larger than d, the PF can be much slower than the EKF and UKF [154],

which is the situation in our specific case. This computational burden is often the main

drawback of the PF for real-time implementation.

We propose a depth-based PF localization (d-PFL) in Algorithm 1; i.e., the PF

uses the AUV’s depth at each iteration as its measurement. PFL update() takes

a bathymetry map, depth measurements, and control inputs and returns propagated

particles representing the AUVs position in three dimensions and their weights. To

evaluate weights wt, we use the multivariate Gaussian distribution as shown in Eq. 7.9.

wt = wt−1e
− 1

2
(x−µ)TΣ

−1(x−µ)
(7.9)
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During the update process, only the particles not over the “shoreline” will have

non-zero weights (i.e, inside a bathymetry map). Once the weights for the particles

are calculated, they are normalized to ensure that they sum to 1. Then, particles are

resampled based on their weights. To avoid a situation where all the particles are

trapped in some local maxima in a bathymetric environment with similar or repeating

profiles, some of the N particles are sampled randomly at each time step. Although

this can degrade the accuracy of the algorithm, it decreases the chance of incorrect

estimations occurring. The pose of the AUV is estimated (Eq. 7.10) once the propagated

particles and the corresponding weights are updated.

x̂ =

M

∑
m=1

w
[m]

x
[m]

(7.10)

7.3.4 Marginalized Particle Filter

The MPF was proposed to reduce the computational complexity of a particle filter while

retaining a similar performance when the model has a linear substructure [159]. The

core idea of the MPF is to marginalize linear state variables from the state vector and

use the KF to estimate those variables. The PF is then used to estimate the remaining

nonlinear state variables. The computational complexity of the MPF is defined in [163]

and can be simplified to O(d3nN) for our case where dn is the dimension of the nonlinear

state variables.

To apply the MPF [156], the model in Eq. 7.1 is separated into linear and nonlinear

state variables as shown in Eq. 7.20 and 7.21. The motion model noise q
n
t , q

l
t, and the

measurement model noise rt are assumed to be Gaussian with zero mean. The matrices

A,C, and G are determined by the motion model (Algorithm 2).

xt = [x
n
t

x
l
t

] (7.20)
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Algorithm 2 MPF

1: Initialize particles
2: Initialize nonlinear state variables

x
n,(i)
0∣−1 ∼ p(xn0) (7.11)

3: Initialize linear state variables

{xl,(i)0∣−1, P
(i)
0∣−1} = {x̄l0, P̄0} (7.12)

4: for t = 1, ..., T do
5: PF measurement update
6: Evaluate the weights

w
(i)
t = p(yt∣X

n,(i)
t , Yt−1) (7.13)

7: Estimate nonlinear state variables

x̂
n
t∣t =

N

∑
i=1

w
(i)
t x

n,(i)
t∣t−1 (7.14)

8: Resample particles

Pr(xn,(i)t∣t = x
n,(j)
t∣t−1) = w̃

(j)
t (7.15)

9: KF measurement update
10: Estimate linear state variables

x
l,(i)
t∣t = x

l,(i)
t∣t−1 +Kt(yt − ht − Ctx̂

l
t∣t−1) (7.16)

x̂
l
t∣t =

N

∑
i=1

w
(i)
t x

l,(i)
t∣t (7.17)

11: PF prediction
12: Propagate nonlinear state variables

x
n,(i)
t+1∣t ∼ p(x

n
t+1∣t∣X

n,(i)
t , Yt) (7.18)

13: KF prediction
14: Propagate linear state variables

x̂
l
t+1∣t = Ā

l
tx̂

l
t∣t +G

l
t(Qln

t )T (Gn
tQ

n
t )−1zt

+f
l
t + Lt(zt −A

n
t x̂

l
t∣t)

(7.19)

15: end for
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Table 7.2: Lake Bathymetry Information

Lake
Height (m)

Size (×10
6
m

2
)

Max. Avg.

Bde Maka Ska -27.43 -10.00 1.71
Nokomis -9.99 -4.11 0.84
Hiawatha -9.45 -4.00 0.22
Harriet -26.42 -9.75 1.39
Turtle -8.53 -3.42 1.83

Howard -10.97 -4.89 3.00
Waverly -21.49 -7.59 1.99
Pulaski -26.50 -11.04 2.98

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x
n
t+1 = f

n
t (xnt ) +A

n
t (xnt )xlt +G

n
t (xnt )qnt

x
l
t+1 = f

l
t(xnt ) +A

l
t(xnt )xlt +G

l
t(xnt )qlt

yt = ht(xnt ) + Ct(xnt )xlt + rt

(7.21)

In our case, the ratio
N(k)
NPF

is 1.1 where N(k) is the number of particles that can be

used for the MPF and NPF is the number of particles used for the standard PF. This

ratio means that the MPF can use 10% more particles than the PF while having the

same computational complexity as the standard PF. However, the EKF and UKF are

still more computationally efficient than the MPF, albeit less accurate.

The MPF localization algorithm is shown in Algorithm 2 along with selected sim-

plified equations where Q and P are covariance matrices. The equations can be found

in detail in [156].

7.4 Simulation Development and Experimental Setup

We developed simulations with real-world bathymetry data to evaluate the proposed

localization algorithms. To this effect, we exploit the capabilities of the Robot Operating

System (ROS) [164] in creating realistic simulations using Gazebo, to reduce overhead

when transitioning to AUV field deployments. Our approach enables the algorithms

to be used in our simulated evaluation, and then deployed in the field with minimal

changes.
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(a) (b)

Figure 7.3: Visualization of raw bathymetry data: (a) in tagged interchange file format (TIFF) of
Bde Maka Ska, and (b) with a satellite image and lake contour. Source: Minnesota Department
of Natural Resources. Darker pixels represent locations with deeper depths.

7.4.1 Bathymetry Data Collection

The following lakes located in Minnesota, USA were chosen as test locations: Bde

Maka Ska
1
, Lake Nokomis, Lake Hiawatha, Lake Harriet, Lake Turtle, Lake Howard,

Lake Waverly, and Lake Pulaski (Table 7.2). We selected lakes that have a wide range

of maximum altitudes, average altitudes, and sizes. Additionally, the lakes are well-

studied, have an undulating floor, and are easy to access for future field studies. The raw

bathymetry data was acquired from the Minnesota Department of Natural Resources

(MN DNR) [165]. Fig. 7.3a shows an example of bathymetry data provided in a TIFF

format. The original data contains the lake altitudes (measured in feet) every 5m in a

grid pattern across the lakes.

7.4.2 Robotic Simulation Development

As mentioned, we use the Gazebo [166] simulation tool and ROS integration for this

work (Fig. 7.4). Specific information on the various components of the simulation is

provided below.

1
No preceding ”Lake” is used for Bde Maka Ska, which was formerly referred to as Lake Calhoun

and had its name restored in 2018.
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Figure 7.4: One example of simulated lakes (Bde Maka Ska) and LoCO AUV. From the top view,
LoCO appears as an white dot in the left image due to the difference in actual scale between
the lake and LoCO AUV. The right image shows a simulated LoCO AUV in Gazebo.

Bathymetry Data Processing for Simulation

Though Gazebo provides built-in ways to import raw bathymetry data (TIFF format),

our preliminary testing shows that using Standard Triangle Language (STL) format pro-

vides a more accurate lake bottom profile. With Gazebo’s built-in bathymetry methods,

the water column depth at each point is only rounded to the nearest meter. We convert

the raw data from the TIFF format to the STL format as follows:

1. Extract an array from the raw data, representing the altitude of the relevant lake

at each grid location.

2. Convert the altitude from feet to meters.

3. Create a model STL file with this array data.

The STL file is created with a process that linearly interpolates solid surface material

between neighboring bathymetric data points in a triangle mesh format. With this,

MATLAB can also be used to interpolate and reduce the bathymetry data grid size to

1m from 5m. For any triangle already in the 5m mesh, the corresponding mathematical

plane equation can be determined based on its vertices. Any of the finer 1m grid points

that land within the triangle can have their depths calculated from this plane equation.

The STL files are then imported into the Gazebo simulation world as solid surface
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models, with a solid ground plane at the top of the model to represent the surface of

the lakes.

AUV and Sensors in Our Simulation

We use the LoCO AUV [167] Gazebo model from our previous work to develop the

simulated experiments. We add two single-beam laser sensors to the LoCO simulation.

Each laser sensor is a proxy for a depth sensor and an acoustic sensor, respectively. Both

provide sensor measurements at a rate of 1 Hz. The depth sensor could be simulated

directly by simulating water pressure instead of using the laser sensor. However, this

would significantly complicate the simulation design, and developing hydrodynamics for

the simulation is out of the scope of this work. Using the laser as a proxy is a convenient

alternative since it provides sensor readings used to validate our approach.

Implementation of the Proposed Algorithms

Gazebo interfaces with ROS using individual processes called ‘nodes’ to simulate and

test algorithms for various robotic functions. For our study, we develop three programs

to facilitate the testing of the four localization filters. The first is the velocity control

node. This program reads the simulation time from Gazebo and sends out predefined

velocity commands to the robot according to the desired velocity profiles. These com-

mands are also received by the second program, which is the particular filter estimating

the position of the robot. The filter programs are triggered to run when they receive

the depth and range measurements from the robot’s two sensors. The filter uses this

state data, the velocity command, and the data from the previous time step to estimate

the current position of the robot according to the algorithm in use. Position estimation

data from the filter is received by the third program, which stores all data relevant to

the current time step of the estimation filter. This information is stored in a final data

file for analyzing each filter’s performance during simulations and providing an overall

assessment of the simulated world.
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Table 7.3: Model parameters

Parameter Value

No. of particles for the PF, NPF 5000
No. of particles for the MPF, NNPF 500

Motion noise cov., Q (m) 0.005
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
2
x 0 0

0 v
2
y 0

0 0 v
2
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Measurement noise cov., R (m) 0.005

2 [depth
2

0

0 alt.
2]

Initial uncertainty cov., P (m)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0

0 1
2

0

0 0 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7.4.3 Simulation Settings

The goal of this study is to evaluate each proposed localization algorithm with real

bathymetry data. For the several reasons introduced in Chapter 1, it is extremely

difficult to evaluate AUV localization in physical, open-water testing, as ground truth

to evaluate against is nearly impossible to obtain [168]. No highly accurate localization

technique is readily available to provide ground truth for our algorithm, as GPS does not

work underwater and options which require equipment such as USBL and DVL devices

are prohibitively expensive. As our work also requires variations in bathymetric data,

evaluations in a closed-water (e.g., pool) environment is infeasible. Thus, to quantify the

accuracy and efficiency of the algorithms, we use our proposed simulation to evaluate

the performances of each filter’s position estimates against the simulated AUV’s motion,

since accurate ground truth can easily be collected in simulation. The linear and mixed

motion models are designed to test the performance of each localization algorithm on

the real-world bathymetry data from different lake environments. As real-world AUV

motion is seldom linear, it is important to evaluate the mixed motion models (which

contain linear and nonlinear components) as well, as nonlinear motion may cause some

localization algorithms to perform poorly. The non-linear motion model will also help

account for perturbations to AUV motion arising from waves and general hydrodynamic

factors.

Table 7.3 shows the model parameters for the simulation. The control inputs for
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each algorithm and lake are separately designed due to the lakes’ different sizes and

altitudes. The parameters are defined for the linear motion in Eqs. 7.3 and 7.4, and the

mixed motion in Eq. 7.5. For the mixed model, x and y are nonlinear state variables,

and z is a linear state variable. We measure the performance of our algorithms on an

AMD Ryzen 7 5800X 8-Core processor with 3.8GHz clock speed running Ubuntu 20.04.2

LTS with 32GB of DDR4 memory with ROS Noetic and Gazebo 11.3. We select five

paths per motion with the four Bayesian filters for total of eight lakes, accumulating to

a total 80 unique simulated trials.

7.5 Results and Discussion

The results of our trials are summarized in Table 7.4 and Appendix A. We use the

root-mean-square error (RMSE) in Eq. 7.22 as a metric to evaluate the performance

for each axis of motion where T is the number of steps, pg is the ground truth, and pe

is the estimated position.

RMSE =

√
∑T

t=1(pg − pe)2
T

(7.22)

The widths and lengths of the lakes are significantly larger than the depths, meaning

that the velocity of x and y axes is generally two orders of magnitude larger than the

velocity of the z axis in our simulation. This yields notably smaller errors in the z axis

than in the other axes (Table 7.4). We also evaluate positional errors (∣pg−pe∣) relative

to velocity for each axis.

In Fig. 7.5, we show one particular trial in Bde Maka Ska as an example. For both

the linear and mixed cases, the MPF generally performed well in this trial. We observe

degraded performance from the PF and EKF evaluations in the linear case; and from

the EKF and UKF evaluations in the mixed case compared to the other filters. The

EKF had the worst performance overall in Bde Maka Ska. The PF outperforms the

other filters in the mixed motion case, but it was the least accurate of the four filters

in the linear case. A likely cause of the degraded performance of the PF is that the

randomly selected particles can cause the estimation to diverge from the ground truth

when a water body’s bathymetry data does not have sufficient variation.
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Table 7.4: Localization performance evaluation for an AUV; bathymetry data from the MN
DNR.

Lake Method

Linear motion model Mixed motion model

Iter.
Time
(ms)

RMSE(m) RMSE(%) w.r.t vel Iter.
Time
(ms)

RMSE(m) RMSE(%) w.r.t vel

x y z x y z x y z x y z

Bde. EKF 20.5 0.151 0.309 0.005 0.863 5.831 2.683 20.1 5.040 5.990 0.016 53.509 182.882 8.683

Bde. UKF 0.3 0.185 0.035 0.003 1.087 0.666 1.534 0.3 1.786 3.488 0.019 33.166 110.868 12.082

Bde. PF 115.0 0.395 0.540 0.006 2.492 10.286 3.861 113.1 0.906 3.000 0.009 15.796 88.855 5.816

Bde. MPF 61.3 0.200 0.041 0.003 1.277 0.933 2.332 62.3 1.801 3.510 0.003 33.475 112.669 1.615

Nok. EKF 24.0 0.349 0.295 0.004 1.523 2.687 1.831 22.3 2.007 1.282 0.004 10.530 12.605 2.254

Nok. UKF 0.3 3.952 1.940 0.031 18.857 18.523 19.373 0.3 5.871 2.908 0.031 32.075 31.783 19.110

Nok. PF 113.9 0.553 0.182 0.007 2.623 1.667 4.465 115.0 3.437 2.016 0.008 19.068 22.464 5.311

Nok. MPF 61.1 0.216 0.055 0.003 0.931 0.503 1.582 62.3 2.806 1.378 0.002 15.462 15.188 1.470

Hia. EKF 3.0 0.289 0.240 0.004 2.337 4.233 1.111 2.9 0.641 0.330 0.004 5.320 5.727 1.121

Hia. UKF 0.3 0.121 0.037 0.004 1.020 0.692 1.001 0.3 0.708 0.345 0.004 4.965 4.912 1.125

Hia. PF 112.5 0.472 0.272 0.004 4.224 4.709 1.334 112.4 1.073 0.509 0.006 8.539 8.873 1.728

Hia. MPF 62.5 0.089 0.022 0.003 0.714 0.390 0.926 62.3 0.711 0.346 0.005 4.988 4.930 1.417

Har. EKF 17.4 0.236 0.152 0.003 1.405 1.5170 0.925 17.2 1.385 0.822 0.003 9.367 9.844 0.856

Har. UKF 0.3 0.812 0.406 0.003 6.820 6.931 1.222 0.3 1.610 0.810 0.003 11.460 11.088 1.077

Har. PF 112.9 0.290 0.452 0.005 1.640 5.128 1.668 112.7 1.665 1.372 0.006 10.496 15.660 1.708

Har. MPF 61.3 0.143 0.035 0.003 0.749 0.401 0.891 62.2 2.103 1.058 0.003 11.550 11.192 1.034

Tur. EKF 24.7 0.355 0.211 0.003 3.090 1.993 0.831 22.4 0.479 0.347 0.004 3.366 12.087 0.930

Tur. UKF 0.3 0.128 0.075 0.004 1.126 0.711 1.221 0.3 0.419 0.090 0.004 2.983 3.006 0.966

Tur. PF 112.5 0.516 0.251 0.006 4.815 2.399 1.893 115.6 0.948 0.723 0.006 7.521 28.647 1.816

Tur. MPF 62.0 0.091 0.041 0.003 0.775 0.366 0.763 62.2 0.451 0.098 0.003 3.210 3.295 0.864

How. EKF 94.4 0.423 0.315 0.007 4.010 2.447 1.715 84.0 1.622 0.971 0.006 12.304 8.386 1.747

How. UKF 0.3 0.115 0.074 0.005 0.991 0.640 1.351 0.3 1.771 1.807 0.006 13.722 14.078 1.789

How. PF 113.2 0.745 0.747 0.008 6.478 7.003 2.330 115.5 1.730 1.820 0.007 13.379 14.387 1.971

How. MPF 61.4 0.127 0.076 0.006 1.135 0.719 1.809 61.3 1.831 1.867 0.004 14.265 14.617 1.180

Wav. EKF 37.1 0.154 0.100 0.004 2.877 1.609 0.985 40.5 0.649 0.572 0.004 6.526 9.100 1.034

Wav. UKF 0.3 0.050 0.025 0.004 0.853 0.456 1.246 0.3 1.040 0.710 0.004 10.464 10.885 1.245

Wav. PF 115.5 0.309 1.113 0.006 5.666 19.694 1.770 116.3 0.995 0.564 0.006 11.545 9.238 1.805

Wav. MPF 61.7 0.059 0.033 0.006 1.029 0.612 1.727 61.5 1.057 0.721 0.005 10.670 11.084 1.515

Pul. EKF 69.8 0.118 0.103 0.004 1.990 1.775 0.906 62.1 2.120 2.346 0.005 17.248 16.117 1.546

Pul. UKF 0.3 0.055 0.028 0.003 0.936 0.514 0.792 0.3 3.781 3.708 0.009 25.876 25.425 2.775

Pul. PF 113.3 0.563 0.865 0.004 10.618 16.022 1.087 113.9 2.951 2.978 0.006 20.136 20.368 1.679

Pul. MPF 61.8 0.076 0.052 0.006 1.411 1.003 1.930 61.3 3.764 3.691 0.002 25.756 25.302 0.665

The intensity of each color is proportional to the error. Red, green and blue colors are used for the x,
y, and z-axis, respectively. Grey color represents the percentage errors across all the axis.

7.5.1 Linear Motion Case

Looking at the overall results from the linear motion case, the EKF does not always

perform best, but it provides reliable and relatively accurate results with lower compu-

tational complexity. While the UKF estimates the position of LoCO with the smallest

RMSE for most lakes, it is not reliable, since its performance varies widely between
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(a) Evaluation of linear motion estimations in
Bde Maka Ska (zoomed-in view).

(b) Evaluation of mixed motion estimations in
Bde Maka Ska (zoomed-in view).
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Figure 7.5: Localization performance of the four algorithms for an AUV with an altimeter and
depth sensor within Bde Maka Ska using bathymetry data (Start:❍ End:✳).

lakes. For instance, the average UKF RMSE of the x,y, and z axes is ten times bigger

than the average MPF RMSE in Lake Nokomis. The average UKF error is three times

greater than the average EKF error in Lake Harriet. The PF’s performance is the worst

overall, particularly in Lake Howard and Waverly Lake since the paths chosen for the

two lakes have fewer variations in altitude compared to the paths in the other lakes.

Although the MPF does not presents the smallest RMSE in every lake, it does not show

significantly degraded accuracy in any of the lakes. The MPF generally gives accurate

and reliable results, and it is computationally cheaper than the PF. Overall, the MPF

is the most reliable and accurate filter based on the results of these experiments. It is
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worth mentioning that the EKF is a good option if an AUV does not have sufficient

computational power for the MPF and if high accuracy is not required. The PF can be

used for localization if the bathymetry data has enough variation in altitude and has

an asymmetrical structure, provided that the AUV has enough computational power.

7.5.2 Mixed Motion Case

Unlike in the linear motion cases, the EKF is much more unreliable for mixed motion

cases, achieving the least accurate estimation out of the four filters in some lakes while

performing best in other lakes. For example, the EKF RMSE is larger than twofold

of the other filters’ RMSE in Bde Maka Ska. The UKF performs poorly in some lakes

due to the high nonlinearity of the motion. However, it needs the least amount of

computational resources among all the filters. The PF displays the same issue in mixed

motion cases that it has in the linear motion cases: the estimations diverge when there

are not enough variations in bathymetry data (i.e., Lake Hiawatha, Lake Nokomis, and

Turtle Lake). Similarly to the linear cases, in the mixed motion cases the MPF gives

reliable and accurate results overall. Therefore, our recommendation for using the MPF

remains the same for mixed motion cases, but we do not recommend using the EKF in

these cases.

7.5.3 Discussion

The MPF consistently produces reliable and accurate results for both the linear and

mixed motion cases while maintaining relatively low computational costs. If an AUV

needs a well-rounded algorithm for the localization problem, the MPF is the best filter

among those we have evaluated. However, if the bathymetry data of a lake has suf-

ficient variation and the task requires high accuracy, then the PF is a better option,

albeit at a higher computational cost. Determining what constitutes enough variation is

a complicated question affected by several factors: the size of littoral zone, the paths of

the AUV, and the average and maximum altitude of the lake. We perform our analysis

on lakes that have a wide range of such factors. Defining the magnitude of variation

quantitatively is a problem that should be explored in future work. While PF and

MPF have high accuracy in some cases, they require memory to store the state of their
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estimated particles, making them computationally expensive. The MPF is significantly

less computationally demanding than the PF, but still requires more memory and pro-

cessing power than the EKF and UKF. Therefore, for an AUV with low computational

power, the EKF could be the best filter for localization, but lower accuracy should be

expected, particularly if the AUV is not constrained to linear motion.

7.6 Conclusion

In this chapter, we present several affordable AUV localization algorithms with low-cost

sensors (i.e., depth sensor and single-beam sonar) and their evaluation results. We first

developed the localization algorithms using four Bayesian filters (EKF, UKF, PF, and

MPF), with single-beam sonar altimeter and depth sensor readings as inputs. We then

built a realistic simulation for an AUV using Gazebo with real-world bathymetry data.

With the simulation and ROS, we evaluated the performance of the algorithms in various

aquatic environments and with multiple robot motion policies. Since our algorithms are

implemented using ROS, they are easily deployable on any ROS-supportive AUVs. Our

approach will reduce the cost and time to develop algorithms for field robots when access

to fields is limited. This chapter concludes Part II, and we will continue to discuss our

proposed algorithms for enabling effective Human-Robot Collaboration in Part III.



Part III: Algorithms for effective

human-robot collaboration

AUVs can face extreme perception challenges when they operate in fully unknown en-

vironments or observe previously unseen objects. In these situations, human-robot col-

laboration (HRC) can be used to augment robotic perception underwater. Additionally,

HRC can reduce risks posed to divers by sending AUVs to patrol potentially dangerous

areas first. Successful HRC tasks require AUVs to find divers, position themselves, and

identify the divers prior to starting collaboration. However, methods allowing AUVs

to perform these operations remain under-studied. Overall, Part III presents novel al-

gorithms that enable HRC tasks by providing AUVs with capabilities to approach and

identify divers. These algorithms can be used to augment robotic autonomy with hu-

man expertise while reducing the physical load for divers, thereby increasing human

safety. Chapter 8 introduces the first underwater human-approaching algorithm using

monocular vision and human-body priors. This algorithm enables robots to find the

diver and achieve diver-relative positioning autonomously while requiring no additional

sensors other than a monocular camera, which is commonly installed on most AUVs.

Chapter 9 presents two novel algorithms for enabling AUVs to identify divers using

face and body pose information using a visual sensor. These methods allow AUVs to

collaborate with only authorized divers to secure human-robot collaboration.
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Chapter 8

Autonomous Diver-Relative

Operator Configuration for

Human-robot Collaboration

As AUVs have been used more commonly for human-robot collaboration tasks (e.g.,

rescue operations, pipeline and ship inspection), the importance of AUVs’ capability to

perform diver-relative positioning has increased. However, this has not gained much at-

tention. This chapter presents a novel method for enabling AUVs with such capability.

Our method uses only a monocular visual sensor with a body prior and is computation-

ally efficient. In this chapter, we provide details about our algorithm and its evaluations,

along with the related background.

8.1 Related Work

Autonomous underwater vehicles (AUV) have traditionally been used for standalone

missions, with limited or no direct human involvement, in applications where it is infea-

sible for humans to closely collaborate with the robots (e.g., long-term oceanographic

surveys [169, 170]). However, in recent decades, the advent of smaller AUVs [171, 172, 4]

suitable for working closely with humans (termed co-AUVs) has enabled robots and hu-

mans to collaborate on tasks underwater. A variety of human-robot interaction (HRI)
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(a) Head-on (b) Turned-away

Figure 8.1: Two examples of ADROC diver approaches: (a) a diver is in the AUV’s field of
view, so the AUV simply moves to the diver, (b) no diver is visible, so ADROC begins a search
procedure, approaching once the diver is found.

capabilities have been developed for co-AUVs to facilitate this work: from gestural

programming [173, 174, 175] and various modes of robot communication [176, 177] to

diver following [178, 179]. However, underwater HRI systems typically often require

that the diver and AUV be close to one another and oriented correctly to operate ef-

fectively [180]. When working in challenging, unstructured underwater environments,

human dive partners are often required to find one another to begin their interactions,

and the same is true of AUVs working with divers. Despite its critical importance, the

problem of how an AUV should find its dive partner and position itself to

facilitate interaction has not yet been addressed. While divers could swim to the

AUV themselves, placing the burden of maintaining an appropriate position for inter-

action on the divers both adds to their existing physical and cognitive loads and robs
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them of precious time and oxygen. This increases the overhead of working with AUVs,

decreasing their usefulness and their adoption rate in the field. An AUV having the

ability to seek out and position itself relative to its operator (as seen in Fig. 8.1) will

increase the utility of HRI-enabled co-AUVs in underwater work.

The problem of an AUV approaching a diver to facilitate underwater human-robot

interactions has not been sufficiently addressed in the past, despite the fact that robots

approaching humans in indoor scenarios (offices, warehouses, etc.) have been studied for

decades [181, 182, 183, 184, 185]. Service robots, for example, have been approaching

humans effectively for years, but the task of achieving this kind of behavior under-

water is much more difficult due to the environmental challenges of the domain: e.g.,

degraded sensing quality, less reliable localization and motion planning, and lack of

wireless communication.

When we consider the realm of underwater HRI, the sub-field with the most rela-

tion to diver approach scenarios is the topic of diver following, which has been widely

studied [178, 179, 186]. Diver following, however, is a very different problem. In diver

following scenarios, there typically are no strict constraints on the distance between

diver and AUV, no precise evaluation of the position of the AUV relative to the diver,

and no functionality for searching for a target who has been lost or is as of yet unseen.

All of these are critical aspects of the AUV diver approach scenario. Furthermore, the

few works which do impose strict constraints on the position and distance of an AUV

relative to a diver [187] require the use of expensive sensors (e.g., stereo cameras, sonar,

Doppler velocity log (DVL), ultra-short baseline (USBL) and long baseline (LBL) local-

ization hardware). This prevents AUVs without those sensors from taking advantage

of the precise diver-relative navigation abilities of these works, abilities key to effective

diver approach scenarios. No existing diver-based AUV navigation method is capable

of reliably approaching a diver (robustly achieving a stable, desired relative position,

orientation, and distance) using only monocular visual information.

To address this need, we propose Autonomous Diver-Relative Operator Con-

figuration (ADROC): a novel algorithm that gives any AUV with a monocular camera

the ability to approach a diver in order to facilitate further human-robot interaction.
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8.2 Autonomous Diver-relative Operator Configuration

To enable AUVs to track and approach divers for the purpose of initiating interactions,

we present the ADROC algorithm. The proposed algorithm was implemented on the

LoCO AUV [4]. However, it could be transferred to any AUV with a monocular camera

and five or more degrees of freedom due to its minimal sensor and control requirements.

8.2.1 Desired Behavior

To guide our algorithm’s development, we select the following set of desiderata (features

desired or required) from our understanding of the AUV interactions we plan to support.

We focus on AUVs working alongside humans in a supporting role, with limited sensing

and no global localization, as this is the environment where we believe our algorithm

will be most useful.

ADROC Desiderata:

D1: Reliably navigate to a beneficial position for interaction with the diver regardless

of the initial location and orientation of both parties.

D2: Accurately approach the diver regardless of diver movement after ADROC initi-

ation.

D3: Approach the diver in a timely manner.

D4: Operate without global localization, 3D diver information, or any off-AUV com-

putation whatsoever.

These desiderata are integrally tied to our expected deployments and create a very

challenging problem. As such, we make the following assumptions to simplify the prob-

lem allowing us to formulate a feasible solution.

ADROC Assumptions

A1: The diver and robot are generally within the visual observation range of one

another, and visibility is sufficient to detect the diver in the AUV’s cameras.
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Figure 8.2: Diagram showing the ADROC algorithm (right) with detail on the state machine
(left). Different components of the algorithm (perception, states, approach controller, and con-
ditions) are presented in consistent colors and shapes.

A2: The diver is generally upright with respect to the robot.

A3: Only one diver will be present in the scene.

Assumptions A1 and A2 are likely to be true in actual deployment scenarios. While

we cannot guarantee ideal visibility conditions in the field, we must assume some level

of visibility (A1) for the dive to occur. The diver’s orientation relative to the robot

(A2) affects the accuracy of our body pose estimation algorithm, likely because the

algorithm is trained on images of humans in upright positions (standing, sitting, etc.)

Our approach algorithm continues to operate with divers in nonstandard orientations,

but has the highest accuracy when the divers are in upright positions. This shortcoming

could be overcome by developing a body pose estimation algorithm and training it

on divers with a wide variety of body positions. Lastly, A3 is not likely to be true

in deployment scenarios, so future versions of this algorithm should account for this

by enabling the algorithm to differentiate between divers and approach only a chosen

target.

8.2.2 The ADROC Algorithm

ADROC has 3 components: a state machine, a diver-relative position estimator,

and a Proportional-Integral-Derivative (PID) [188] approach controller tuned for
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diver approach operations. These components, along with an AUV motion controller

and diver perception modules, are pictured on the right of Fig. 8.2 where the interactions

between these components are shown. The diver perception modules are considered

external to the algorithm as they may be replaced with other systems if necessary;

these modules are briefly discussed in Section 8.3.1. The diver-relative position (DRP)

estimator, which is responsible for producing information on the position and distance

of a diver relative to the AUV, is addressed in Section 8.3.2, and we discuss the approach

controller in Section 8.3.3.

Therefore, we largely focus on the state machine portion of ADROC in this section,

which is pictured on the left side of Fig. 8.2. The state machine consists of four states

and two conditions which manage transitions between them. To begin, the state machine

checks if a diver is currently visible in the scene. If there is an estimate of the diver’s

relative position available, it transitions from the INIT state to the APPROACH state,

which activates the approach controller. During the APPROACH state, the approach

controller manages the robot’s orientation and distance relative to the target diver,

continually checking if a diver remains visible. If at any point the AUV does not see the

diver, it transitions into the SEARCH state. The SEARCH state triggers the AUV’s

search behavior, which is currently a slow yaw motion, turning in circles and scanning

for divers. In the future, this could be redefined with a more complex behavior, utilizing

information about the environment the robot is in and the last known location of divers

in that environment. Once a diver is visible, the SEARCH state transitions to the

APPROACH state. Finally, the APPROACH state is successfully terminated once the

diver-relative position is stable at a point close to the ideal position within a configurable

margin of error. Once the AUV is stable in that position, the state machine transitions

to the CONCLUDE state, which currently simply terminates the ADROC algorithm.

To understand the APPROACH state and how the conditions responsible for state

transition are determined, we must first explain the components of ADROC.
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8.3 Methodology

8.3.1 Diver Perception Modules

ADROC is currently designed to operate with diver bounding boxes and diver body pose

estimations, which can be obtained from any source. We present the modules currently

in use, which operate on monocular images, allowing ADROC to be used by any AUV

with at least one camera. The modularity of our approach allows the adaptation of new

sensors or perception algorithms in the future.

Diver Detection

While a number of approaches to diver detection have been proposed [178, 179], recent

work [189] profiled the efficacy of popular deep detectors for the diver detection task.

Based on the analysis of [189], we selected a YOLOv4-Tiny diver detector trained on

VDD-C [189] due to its relatively high accuracy with a fast inference time on embedded

hardware. The detector outputs a set of detections with associated confidences, from

which we select the highest confidence detection (due to assumption A3).

Diver Body Pose Estimation

Body pose estimation aims to locate a set of body joints from a given image. We

obtain a diver pose with a real-time pose estimation implementation [190] (a TensorRT

implementation of human pose estimation [191, 192]). From the pose, we only utilize

the left and right shoulder joint coordinates of a single body pose detection for our

algorithm.

8.3.2 Diver-Relative Position Estimation

With the perception information being provided by our diver detector and pose estima-

tion modules, we process the resultant data to produce a diver-relative position estimate

(DRP), composed of a target point (TP) and pseudo distance (PD). This data is

used by our approach controller to center the diver in the frame of the camera and to

reach a desired distance from the diver. In calculating both the target point and pseudo
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distance, we utilize all available information from both the bounding boxes and shoul-

der coordinates returned by our diver perception modules. Our algorithm is robust to

missing information from either module.

Target Point

We define the target point based on bounding box information to be the centroid of

the bounding box. Alternatively, based on body pose estimates, we define the target

point as the center point between shoulder joints. If both bounding boxes and body

pose estimates are available, the target point is defined as the mean of these two points,

but if only one is available, it is used as-is.

Pseudo Distance

Common approaches to estimate the range to a diver would be to use sonar data or

calculate disparity and estimate depth from stereo imagery, which has its own chal-

lenges [193, 194]. Our algorithm is designed to work with only monocular vision available

so that it functions even on the least sensor-equipped AUVs. This creates a challenge, as

monocular images do not contain sufficient information to accurately estimate distances,

which we need to navigate to an appropriate distance relative to the diver. We overcome

the problem of estimating the range to the diver without introducing new sensors by

making a rough estimate which utilizes the shoulder width of the diver, called Biacro-

mial breadth [195]. Biacromial breadth can differ based on demographic and individual

variation, but we use average data available from national surveys [195], with the option

of fine-tuning our estimate with specific measurements of diver shoulder width for an

individual. For body pose estimation input, the shoulder width is the distance between

the estimated shoulder points, but for diver detector input we treat the bounding box

width as a rough estimate of shoulder size.
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Table 8.1: The Pseudo Distance (PD) metric based on distance d between a diver and robot.

Distance (d(mm)) PD

d > Dideal 0 < PD < 1
d = Dideal PD = 1
d < Dideal PD > 1

We propose a metric embedding distance information, Pseudo Distance (PD), using

diver detection and pose estimation as individual sources of shoulder width information

(Eq 8.1). Psuedo distance is defined as inversely proportional to the ideal interaction

distance. It is greater than 0 at any distance, less than 1 when farther from the diver

than desired, 1 at the ideal distance, and greater than 1 when the robot is closer than

the ideal distance (Table 8.1).

The following camera sensor, image, and physical specifications are used to develop

PD: CMOS sensor size (mm), focal length (mm), image size (pixel), and shoulder width

of a diver (mm, pixel). The detailed steps are:

1. Empirically select an ideal distance Dideal(mm) for interaction between a diver

and AUV.

2. Take the average shoulder width reported in [195] as the width of the diver’s

shoulder. Alternatively, measure the true shoulder width of the diver.

3. Measure the shoulder width in image pixels (wshoulder) from an image with the

diver at the ideal distance Dideal(mm).

4. Select target shoulder ratio as the ratio of the shoulder width (wshoulder) to the

image width (wimg).

The target shoulder ratio is separately defined for diver detection and pose esti-

mation information, as the source of the shoulder width estimate varies drastically in

accuracy, with body pose estimation being more accurate. This is due to the fact that

a bounding box changes size significantly based on the diver’s body pose (e.g., a diver

with open arms yields a much wider bounding box than one with arms held at the

side), while the distance between shoulder joints does not change based on the rest of

the diver’s body pose.
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PD =
wshoulder

wimg × target shoulder ratio
(8.1)

Whenever body pose estimation information is available, we default to using a pseudo

distance based on pose data, as it is significantly more accurate. However, when such

information is not available, we fall back to our estimate based on diver detection

bounding boxes.

8.3.3 Approach Controller

The calculated DRP is passed on to our approach controller, which manages the ap-

proach procedure based on the target point and pseudo distance estimations produced

by the DRP estimator. The approach controller maintains three separate PID con-

trollers for the three axes of control it has: one controller for surge (forward and back),

one for yaw (left and right), and one for pitch (up and down). These controllers are

based off of error measurements (Eq. 8.2-8.4) comparing the target point to the im-

age’s center point and comparing pseudo distance to the ideal pseudo distance, which

is defined as 1.0 (see Table 8.1).

error forward = 1.0 − PD (8.2)

error yaw =
target x − center x

image width
(8.3)

error pitch =
target y − center y

image height
(8.4)

The PID controllers in the approach controller operate on these errors in the stan-

dard fashion [188], which we will not detail here. Their parameters are tuned separately

based on experimental results. The approach controller constantly calculates motor

control values based on the available target point and pseudo distance, but only applies

those controls to the motors (resulting in motion) when enabled by the ADCROC state

machine switching to the APPROACH state. The approach controller limits its speed

to 60% of the AUV’s maximum velocity for safety.
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(a) DRP in Gazebo (b) Third person view in Gazebo

(c) DRP in pool. (d) Third person view in pool.

Figure 8.3: Diver-relative position (DRP) visualizations with a third person view, displayed in
the Gazebo simulator and a pool scene. In the DRP visualization, the center of the circle is the
target point while the radius represents pseudo distance.

8.4 Experimentation

8.4.1 Experimental Platforms

To test this work, we used the the LoCO AUV [4], which is a modular, low-cost, open-

source AUV equipped with dual monocular cameras and three thrusters. All the com-

putation required for ADROC was done onboard, primarily using a Nvidia Jetson TX2

mobile GPU. Additionally, we used a LoCO simulation in ROS Gazebo [196] (Fig. 8.3)

as a tool for developing the algorithms and evaluating them.

8.4.2 Pool Experiments

A set of pool experiments was performed to validate the ADROC algorithm’s ability

to successfully approach a diver. These experiments took place in two different pools,

one with clear water and bright, even lighting, and another with murky water and dim,

irregular lighting. One example is shown in Fig. 8.4. A total of 9 divers were used as

the target of the approach algorithm, with shoulder widths between 33cm and 48cm.
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(a) DRP in pool. (b) Third person view in pool.

Figure 8.4: Diver-relative position (DRP) visualizations for a scuba diver in a deep pool.

Six of the divers were tested in the clear pool (Experiment #1) and three in the cloudy

pool (Experiment #2). In each trial, the AUV was made to approach the diver from

the combination of three initial distances (3 meters, 6 meters, 9 meters) and from three

initial angles between the AUV and the diver (0
◦
, 45

◦
, 90

◦
) as shown in Fig. 8.5. These

variables of distance and orientation combine to create nine distinct conditions of AUV

approach. For each condition, two trials were conducted per diver for a total of 162

trials. For each trial, we allowed the AUV to enter the SEARCH state up to twice after

the first APPROACH state. If the AUV reached the CONCLUDE state at the desired

position before entering the third SEARCH state, we considered the case as a success,

but as soon as the AUV entered the third SEARCH state after an APPROACH, the

case was deemed a failure. Additionally, we recorded the time taken for each case,

regardless of success.

8.4.3 Results

Types of Failures

Of the 162 recorded trials, 30 failures were recorded. These failures can be grouped into

three categories: search failures, early conclusion, and no conclusion. Search

failures (12 cases) were characterized by repeated returns to the SEARCH state, usually

due to one of two issues: overshooting the initial rotation required for an approach, or
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Figure 8.5: Pool experiments setup: three distances (3m, 6m, 9m), three angles (0
◦
, 45

◦
, 90

◦
).

Circles represent diver positions for the experiments.

receiving inaccurate detection data from the diver perception modules. Re-tuning the

approach controller may help to reduce these failures. Early conclusion failures

(11 cases) were caused by ADROC entering the CONCLUDE state prior to reaching

the appropriate relative distance to the diver. These occurred almost exclusively for

participants with small shoulder widths and were caused by the pseudo-distance based

on bounding boxes reaching a stable point at a distance of 5 meters, prior to the AUV

entering the detection range of the diver pose estimation. This type of failure can likely

be entirely resolved by tuning the target shoulder ratio as described in Section 8.3.2.

Lastly, no conclusion failures (7 cases) were caused by ADROC failing to detect a

stable position while in the appropriate relative position to the diver. This failure is

likely due to tuning issues with the approach controller, but should also be resolved by

further improvement of the approach controller.

Aggregate Data

The summarized data in Table 8.2 represents the averages of our results. We note

that Experiment #1 has a higher overall success rate (88.9%) compared to Experiment

#2, likely due to the better visual environment which led to higher quality perceptual

inputs. Success rates reduce as the initial distance increases, most likely due to reduced

accuracy of diver detection and pose estimation, which leads to fewer successful searches.

Average times for an approach increase as well, but this is mostly due to the increased
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Table 8.2: The success rates and average operation time of ADROC based on the trial, distances,
and angles.

Experiment Success Avg. Time

Exp. #1 (clear pool) 88.9% 25s
Exp. #2 (cloudy pool) 66.7% 28s

Distance Success Avg. Time

3 meters 92.6% 21s
6 meters 83.3% 28s
9 meters 68.5% 29s

Angle Success Avg. Time

0 77.8% 22s
45 83.3% 24s
90 83.3% 33s

Overall 81.5% 26s

distance that the robot has to travel. When considering the effect of the initial angle,

we see that approaches from the 0 condition have the lowest accuracy, but not by a

statistically significant amount. This is likely due to random chance, as the difference

in success between the 0 and the other angle conditions (which have the same success

rate of 83.3%) is only 3 failures.

ADROC Runtime

All components of ADROC were run on the onboard computers of the LoCO-AUV:

the Raspberry Pi 4 and the Nvidia Jetson TX2. The diver detector and diver pose

estimator, running concurrently on the TX2, ran at 15 fps and 10 fps respectively.

Also on the TX2, the diver-relative position estimator ran at a set frequency of 20 Hz,

while the ADROC state machine ran at 10 Hz. The only component which ran on the

Raspberry Pi was the approach controller, which runs at a set frequency of 10 Hz. This

frequency of the overall system (about 10 Hz) was sufficient to operate the AUV at

relatively low speeds, although an improved frequency is possible with a more powerful

GPU.
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Figure 8.6: (a) LoCO was turned away from a diver at the beginning. Through the SEARCH
and APPROACH states, LoCO detected the diver and placed itself at the designed distance
from the diver, (b) LoCO was facing a diver and started with the APPROACH state. However,
spikes in PD error (bounding box only DRP estimation) caused unstable control and failure.

Individual Cases

Fig. 8.6 presents one of each success and failure cases from our experiments. In Fig. 8.6a,

the AUV was at the turned-away angle, thus starting with the SEARCH state. During
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its second APPROACH state (t=7.3-17.3s), the AUV occasionally failed to detect pose

estimates of the participant, and the diver detection estimate was used to yield the

PD. The spikes (t=12.9s, 14.4s, and 16.4s)in the Pseudo Distance Error were caused

when the AUV controlled its distance to the participant based on the diver detection

as opposed to body pose estimation. In Fig. 8.6b, the AUV started with the AP-

PROACH state since it was at the head-on angle and was able to see the participant

right away. The participant was detected by the diver detection consistently while the

pose estimation only failed occasionally. More frequent PD estimation based on the

diver detection caused an overshoot from the approach controller (more spikes from

the beginning), and it resulted in failure. Additionally, the missing data points during

the second APPROACH phase (t=20.7-21.2s) are consistent with system lag, possibly

due to processing issues with the camera or some competition between processes for

computational resources.

8.4.4 ADROC Limitation Experiments

To explore the limits of ADORC, a small number of trials were performed with more

challenging conditions, in a deep pool similar to the pool used for Trial #1. These

trials are not included in the aggregate results above, because of the small number of

participants for each. We repeated ADROC trials for one participant who was included

in the normal trials in scuba equipment such as a wetsuit instead of the general swimwear

that our participants wore. No reduction in accuracy compared to non-scuba trials was

detected. Trials were also conducted with an adversarial condition, in which the AUV

was pushed partway through an approach, mimicking a wave knocking the robot away

from its chosen path. This also did not cause a reduction in accuracy. Lastly, trials

were conducted up to 15 meters away from the diver. While the algorithm generally

still functions, the AUV struggles to effectively switch from SEARCH to APPROACH

as the approach controller sends yaw commands of a high intensity causing the AUV

to quickly overshoot and miss its target. This could likely be improved with pseudo

distance-relative tuning of the approach controller.
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8.5 Conclusion

We present a novel algorithm, Autonomous Diver-Relative Operator Configuration

(ADROC), to facilitate diver-AUV collaboration. We demonstrated that ADROC en-

ables an AUV to robustly approach divers with various shoulder widths from different

distances and angles in our experiments. The advantages of our method are that it only

requires a monocular camera, needs no extra sensors to estimate the distance to a diver,

functions without global localization, and runs at real-time speed using on-board AUV.

Our presented work clearly demonstrates the efficacy, reliability, and potential of our

algorithm, despite the minimal information and sensors utilized. In the next chapter,

we advance one more step and introduce two diver identification methods that enable

secure human-robot collaboration tasks.



Chapter 9

Diver Identification for

Human-robot Collaborations

To operate secure missions as underwater human-robot teams, AUVs need to identify

divers accurately. However, this remains an open problem due to divers’ challenging

visual features, mainly caused by similar-looking scuba gear. This chapter presents

our approaches to addressing a diver identification problem using data obtained by a

visual sensor, which is commonly available on AUVs. We introduce two methods: (1)

DiverFace, to identify divers using their facial features, and (2) DiverID, to recognize

divers using their body pose information. Each method is presented in detail in the

following sections.

9.1 Related Work

One of the preliminary works on person identification was described in [197], where the

proposed method used anthropometric data to identify different individuals. As the

technology evolved, anthropometric data-based identification methods were replaced by

identification systems using biometric information, such as fingerprints, voice, and iris

scans [198]. Spectral information extracted from electroencephalogram (EEG) signals

can also be used to identify a person [199]. Furthermore, person identification using

facial cues has seen incredible success [200, 201], especially with the availability of large-

scale human face datasets [202, 203, 204], superior computing power, and advances in

109
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deep convolutional neural networks [205]. Alternatively, gait detection can also be used

to uniquely identify a person, as it has been found that walking patterns have a high

correlation to a subject’s identity [206].

The above-mentioned techniques were developed for terrestrial applications. Person

identification techniques in an underwater environment (i.e., diver identification), on

the other hand, are significantly less studied. Existing vision-based diver identification

methods [207, 208] use motion characteristics to recognize divers, which would work

neither in close proximity nor in the case of immobile divers. A possible solution would

be to use facial cues for identification. In the literature, human subject identification

using faces has been widely studied for terrestrial robots [209, 210]. In contrast, diver

identification using faces has received little attention, partially due to the fact that

divers’ faces are heavily obscured by their masks and regulators.

In recent years, deep convolutional neural networks have yielded high accuracy in

face recognition tasks [211, 212, 213]. In general, most of these methods include the

following steps:

1. Face detection: by learning a feature pyramid [214], using a “proposal and refine-

ment” mechanism [215], or densely sampling locations across multiple scales [216];

2. Face classification: achieved by either training a multi-class classifier to classify

different identities in the training set using softmax loss [217] or directly learning

the face representation (i.e., embeddings) to classify different identities which may

not be present in the training set [218].

For the face recognition task, the primary objective is to ensure compactness in intra-

class distances (i.e., the same faces) while maximizing the inter-class distances (i.e.,

different faces) [219, 220].

Generally, traditional methods discussed above exhibit poor performance on partially-

occluded faces. The work in [221] proposed to extract local face descriptors only from

the non-occluded facial areas. In [222], a deep network is used as a feature extractor

to classify faces from partial data. However, the discriminative power of these meth-

ods is limited. In [223], the authors code the occluded face image as a sparse linear

combination of the training samples and the occlusion dictionary. But, it fails to gener-

alize because of the assumption that test samples have identical subjects as the training
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Figure 9.1: An example of facial occlusions by breathing apparatus underwater. The left side is
the face from the in-air, and the right is the face wearing the apparatus.

samples. In contrast, the work in [224] trains a deep network to detect facial keypoints

from partial face images and then the angles between the keypoints are used to perform

face identification. However, none of these methods show how to tackle significant fa-

cial occlusions as those occurring from underwater breathing apparatus (Fig. 9.1). In

addition, the work in [225] shows that the network trained on a large dataset is unable

to achieve 50% accuracy when faces are cropped by more than 40%. This research gap

is mostly due to the difficulty in collecting real-world diver face datasets, distortions

present in underwater imagery, and the complex facial occlusions occurring on diver

faces.

In addition to using facial cues for identification, Munsell et al. [226] show that an-

thropometric data (AD) can be used to identify different individuals. They demonstrate

that these data are less sensitive to photometric differences and more robust to obstruc-

tions, e.g., glasses, and hats. Similarly, the work in [227] shows that anthropometric

and gait features can be used to uniquely identify different people. The authors extract

such features from data of different individuals walking. In this chapter, we also choose

to use anthropometric data to represent and identify different scuba divers. To compute

these AD values, we turn to 2D pose estimation methods which can find the location

of different human body joints. There are a number of 2D pose estimation approaches

(e.g., OpenPose [228], trt pose [190], MediaPipe [229], DeepLabCut [230] to name a few)

which achieve high accuracy in terrestrial applications. For our purpose, these methods

generated a high number of incorrect pose estimations for the divers we used in our

study, possibly due to water turbidity and challenging lighting conditions. A recent
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work [231] uses high-resolution representation learning to achieve semantically rich and

spatially precise pose estimations. The authors employ several high-to-low-resolution

convolutional branches in parallel to achieve this. We also exploit this method in our

work to estimate diver poses.

9.2 DiverFace: Diver Identification Using Facial Cues

The overall pipeline of the proposed approach consists of both online and offline com-

ponents. Once trained, the inference process runs entirely on-board AUV.

9.2.1 Offline Module

Data Augmentation

A significant challenge in the diver face identification task is the unavailability of diver

face datasets. To circumvent this issue, we resort to using publicly available traditional

regular face datasets and perform a series of operations to transform them into diver

faces. Our augmented face dataset thus includes both regular and diver face pairs.

First, we perform frontalization to the faces, as described in [232]. That is, given a

query photo, we detect facial features on both the query photo and a rendered 3D face

model. The 2D coordinates on the query image and the corresponding 3D coordinates

on the 3D model enable us to estimate a projection matrix to project the 2D keypoints

from the query photo onto a reference 3D coordinate system. Finally, the missing pixels’

color intensities are filled in with the original query image’s symmetric regions. We

perform an automatic crop on the processed image to retrieve the original composition

of the image. The motivation behind the frontalization step stems from the fact that

the scuba divers will likely be in a frontal-looking position while directly interacting

with an AUV.

Next, we use a facial keypoint prediction network, which uses four convolutional

layers and three fully connected layers to output 15 (x, y) keypoint coordinates. These

15 keypoints are used to put different kinds of masks and regulators on top of the faces

to make them look like diver faces. We process the masked images further to achieve

the underwater green/blue hue [5]. In addition, to account for the distortions, such as
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Figure 9.2: Data augmentation steps for preparing the training dataset for the facial feature
extractor network. (a) Frontalization. (b) Automatic crop. (c) Color correction and keypoints
regression. (d) Apply mask and regulator based on the 15 keypoints. (e) Colorization [5] to
incorporate underwater lighting conditions. (f) Applying underwater effect [6]. (g) Crop to
tighten the boundary.

Figure 9.3: Reconstructed faces of two participants. The left side of each pair is the original
image, and the right is the reconstructed one: (left pair) diver face and (right pair) regular face.

barrel distortions [233] and longer focal lengths caused by underwater optics, we add

some underwater effects [6] to the face images so that they closely resemble the pictures

taken underwater. Fig. 9.2 demonstrates all the steps of the data augmentation process.

Feature Extraction Method

To extract discriminative features from facial images, we use a convolutional autoen-

coder [234]. The autoencoder first encodes the face as a compact hyperdimensional

feature vector from which it decodes the feature vector to reconstruct the face. The

convolutional layers of the autoencoder help to capture features from the images. Es-

sentially, the network learns to obtain a highly discriminative 512-dimensional feature

embedding to represent a face. We vary the composition of the training dataset (e.g.,

regular + diver faces and diver faces only) to see the impact on the reconstructed faces.

Moreover, we vary the size of the encoder output to create different dimensional fea-

ture embeddings for comparison purpose. Fig. 9.3 shows two sample outputs from the

autoencoder where it tries to reconstruct the faces of two participants.
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Figure 9.4: An example of variance analysis for dimensionality reduction. The blue and the
green values represent variance values for regular and diver faces, respectively. The variance
values for both regular and diver faces from dimensions 3 and 6 are more than a predefined
threshold value (0.25), making these two dimensions desirable for representing regular and diver
faces.

Variance Analysis for Dimensionality Reduction

To correctly match a person’s diver face with their regular face, the diver’s face with-

out the mask and the breathing apparatus would be ideal to have. We achieve this by

performing a variance analysis (VA) on both regular and diver faces to find the fea-

ture dimensions that contribute to highly discriminative facial cues only (i.e., highly

variant dimensions). First, we use the autoencoder to extract 512-dimensional feature

embeddings from the faces (regular + diver) in our dataset. With this embedding, we

compute the variance of all 512 feature values across all the regular faces which gives us

a 512-dimensional variance vector. We perform a similar computation on diver faces to

yield a similar length variance vector. Second, we compare these two 512-dimensional

variance vectors to find the highly variant dimensions. Specifically, we use a predefined
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threshold to find these dimensions. To find the threshold, we start at the initial value of

0.009 and increment by 0.005 to generate a set of thresholds. Then, we use values from

this set to lower the feature dimensions of the faces from the training dataset and calcu-

late the identification accuracy with the reduced features. We pick the threshold value

which gives the highest identification accuracy. This way, we find a lower-dimensional

(R-d, R << 512) feature representation for both diver and regular faces which contain

highly variant feature values. VA converts the original feature embedding (i.e., encoded

output from the autoencoder) to a lower-dimensional feature representation by filtering

out inconsistent features between each diver and regular face pair. This will also require

less memory to store the feature representations. Fig. 9.4 shows a notional example of

the VA method for 8-dimensional feature representations. From this, we see that only

the third and the sixth dimensions appear to be highly variant based on the set thresh-

old value. Therefore, the final feature representations of diver and regular faces should

have only these two dimensions.

Diver Face Identification Database

To correctly identify a scuba diver for a secure HRC task, an AUV must know beforehand

who the particular individuals are to interact with. To serve this purpose, we construct a

diver face identification database that stores feature embeddings for regular faces of the

authorized divers. Specifically, we store the lower-dimensional embeddings, computed

as described in Section 9.2.1, of the regular faces. We store at least two facial feature

embeddings for each subject to reduce outlier data, resulting in minimizing the false

negative rate. Note that we do not store any information directly obtained from the

diver faces in the identification database.

9.2.2 Online Module

Diver Face Localization

When multiple divers are present near an AUV, the AUV needs to authenticate a diver

before they are authorized to issue commands. First, the AUV needs to localize or

detect diver faces. To this end, we found that RetinaFace [235] performed the best in

localizing diver faces in underwater images compared to other face detection algorithms
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Figure 9.5: Complete pipeline of the proposed diver face identification system. The overall
system consists of an online as well as an offline component. In real-world scenarios, only the
online module is executed by AUVs to recognize scuba divers, e.g., to ensure they are allowed
to operate the AUVs.

(e.g., [236, 237]). RetinaFace is a single-stage pixel-wise face detector that employs a

joint extra-supervised and self-supervised multi-task learning strategy to localize faces

at various scales.

Diver Face Feature Extraction and Matching

Once the AUV has detected a diver face from the captured image, it will extract facial

feature embedding from the diver face using the method described in Section 9.2.1. Since

we infer salient dimensions from extracted facial features (Section 9.2.1), we extract the

diver face feature embedding from the feature values in those dimensions only. Then, this

embedding is compared against all the stored embeddings in the diver face identification

database. If a match is found, the AUV would interact with the diver.

Fig. 9.5 shows the complete pipeline of the proposed diver face identification frame-

work.
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Figure 9.6: A few instances sampled from the proposed dataset. It includes a total number of
22, 031 (regular + diver) face images with 184 different subjects.

9.3 Experimental Setup and Evaluation

9.3.1 Dataset

Training Set

There are 184 different subjects in the dataset, collected from the following sources [238,

239]. Each subject has multiple regular face images. We augment the dataset by putting

four different types of masks and two different types of regulators on top of the regular

faces. This gives us a total number of 22, 031 (diver + regular) samples of 184 different

subjects. We use different combinations of masks and regulators so that our feature

extraction model learns generalized discriminative face features. Finally, we carry out

the steps described in Section 9.2.1 to prepare the final dataset. We show a few sample

images from the prepared dataset in Fig. 9.6.
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Evaluation Set

We conducted a human study
1

with 27 participants to create an evaluation dataset

for the proposed method. We took their facial photos while they were in the follow-

ing conditions: 1) fully submerged in the pool wearing a mask and a snorkel and 2)

outside of the pool without dive apparatus. Diver face images are collected from three

different pool environments, under different lighting conditions, and at various water

depths. Even though our augmented dataset has regulators on faces while the partic-

ipants were wearing snorkels, our proposed method appears to be invariant with the

type of breathing apparatus from our experiments.

9.3.2 Evaluation Criteria

We evaluate the performance of the proposed approach on real-world data by comparing

a query diver face against the stored regular faces in a feature space. Specifically, a

query embedding is compared against the stored embeddings by calculating the cosine

similarity (CS) [240] between them. The CS metric provides better distinction between

our test images than other similarity measures (Euclidean and Manhattan distance).

The CS between two feature vectors fq (embedding of the query face) and fa (embedding

of the stored face) is defined as,

CS(fq, fa) =
f
T
q fa

∥fq∥∥fa∥
(9.1)

Our algorithm uses the CS values to classify the ID of the query embedding by

selecting the ID from stored embeddings which gives the highest CS. We check if they

are the same subject. If they are the same, the prediction is considered correct. To

calculate the accuracy of the predictions, we take a number of test samples (i.e., real-

world diver faces) to match them against the stored subjects and keep a count of the

correct predictions. Finally, we divide this number by the total number of test samples

to get the final prediction accuracy.

1
The study (reference no. 00013497) was reviewed and approved by the University of Minnesota’s

Institutional Review Board.
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(a) Mask “Off” Network

(b) Mask “On” Network

Figure 9.7: Failure cases of the domain transfer techniques. (a) Fails to completely remove
masks from the diver faces. (b) Improperly trained data generation model completely destroys
the underlying information of the image.

9.3.3 Model Selection and Evaluation Results

To evaluate the performance of our approach against other methods, we conduct two

baseline experiments in addition to our approach on the evaluation datasets. In the

first experiment, we test SOTA face recognition algorithms to extract features. In the

second experiment, we perform domain transfer (diver-to-regular and vice versa) on the

evaluation dataset first and extract the features with the face recognition algorithm.

Lastly, we use our method to extract features from the dataset. We provide details in

this section how we perform feature extraction for each case.

Face Recognition Algorithms

We select ArcFace [201] and FaceNet [213] as baseline face recognition models because

they are two of the most accurate face recognition algorithms. We train both models

with our augmented dataset (see Section 9.3.1). We choose the following parameters for

the networks. For ArcFace, we use a batch size of 128 and an input size of 112 × 112.
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As the optimizer, we choose stochastic gradient descent with a learning rate of 0.01 and

a momentum of 0.9. For FaceNet, we select a batch size of 128 and resize the input size

from 112× 112 to 160× 160, which is required by FaceNet. We train the network using

Adagrad optimizer with a learning rate of 0.1 and a learning rate decay factor of 1.0.

From our tests, ArcFace and FaceNet show 14.8% and 18.5% accuracy, respectively.

During our tests, we see that facial embeddings of size 512 converges to the lowest

validation loss and therefore, we use 512-dimensional feature embeddings to represent

faces. The number of training parameters (ArcFace: 40M and FaceNet: 140M) of both

networks enable them to learn facial features from large datasets (e.g., VGGFace2 [241]

(3.31M) and MS-Celeb-1M [203] (1M)), but they overfit with our training dataset since

it is much smaller compared to the large datasets.

Domain transfer and Face Recognition Algorithm

To minimize the error coming from the discrepancy between stored regular faces (ground

domain) and query diver faces (underwater domain), we apply domain transfer from

both sides: 1) Mask Off: domain transfer from diver faces to regular faces and 2)

Mask On: domain transfer from regular faces to diver faces. We choose CUT [242],

which is a generative model to perform domain transfer. With this approach, we can

extract features from faces within the same domain (i.e., underwater vs underwater,

ground vs ground). We use the following parameters to train CUT: batch size of 1,

Adam optimizer with learning rate of 0.0002, β1 = 0.5, and β2 = 0.999. While it shows

improved performance compared to the former experiment in the case of “Mask On”

(25.9%), it is prone to failure when the generation is not reliable. Fig. 9.7 shows a

few instances when generation from CUT failed and worsens the identification process.

“Mask Off” shows much worse performance (7.4%) compared to other experiments since

the generation process of regular faces were susceptible to many factors (i.e., type of

faces, mask color, snorkel shape, etc). Furthermore, the generated faces often have

smudged facial features (e.g., nose and mouth), and this degrades the performance of

this approach.
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Figure 9.8: Diver face identification accuracy results evaluated on real-world data with different
approaches. Our approach with VA shows the highest accuracy among all the approaches.

Proposed approach

For our feature extractor, we use a convolutional autoencoder [234] with both regular

and diver faces from our augmented dataset. The model parameters are 19M and 20M

for the encoder and the decoder, respectively. We use a batch size of 128, and we train

the network with Adam optimizer, having a learning rate of 0.001. We perform VA to

find a highly variant 194-dimensional feature embedding (instead of 512) to represent

faces. As can be seen from Fig. 9.8, our approach achieves an accuracy of 51.8% in

correctly identifying divers, which is higher than all other comparing methods. Our

experiments with smaller initial embeddings, e.g., 128- and 256-dimensional, show their

best accuracies of 25.93% and 37.04% even after performing VA.
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Figure 9.9: Diver Identification Framework: Given an RGB image input, our algorithm first
extracts features from the diver’s pose. We then predict the diver’s ID using these highly distin-
guishable features. The numbers in the middle figure represent 17 body keypoints. Additionally,
the AD{1,⋯, 10} in the right-side figure shows features extracted from the pose estimation as
discussed in Section 9.4.

9.3.4 Practical Feasibility

The accuracy of the proposed method is around three times higher than the SOTA face

recognition algorithms for a diver identification task (see Fig. 9.8). It shows that our

approach is effective in capturing discriminative features from diver faces even though

they are heavily obscured with mask and breathing apparatus. Furthermore, it only

requires 194-dimensional feature vectors for each individual information, which uses

minimal disk space to store them. Our model only requires 19M parameters, which is

much less than the SOTA facial algorithms, such as ArcFace(40M) and FaceNet(140M).

This helps reduce the computational load on embedded robotic computing hardware and

will lead to faster inference time. From our testing on an Nvidia Jetson TX2 embedded

GPU, it took approximately 433 ms to load the model and approximately 133 ms to

make the inference. The results lead us to believe that the proposed framework can run

in real-time. However, the model loading time needs to be improved by reducing its size

in case multiple deep learning models are being simultaneously used on board AUV.



123

Figure 9.10: Examples of pose estimation failures caused by divers’ erratic movements under-
water and highly obscured (by dive equipment and bubbles) facial features.

9.4 DiverID: Diver Identification Using Anthropometric

Data Ratios

9.4.1 Diver Identification Algorithm

Our identification algorithm consists of four major components: (1) Pose Estimation

and Filtering, (2) Feature Extraction, (3) Metric Learning, and (4) Training Models for

Metric Learning and Classification. We perform pose estimation on the image frames

containing a diver and filter them using anthropometric data statistics. Then, we com-

pute features from the filtered pose estimations to train different models to identify

divers. Fig. 9.9 visualizes this process.

Pose Estimation and Filtering

To maximize the probability of getting stable pose estimation, our system requires

the divers to take a standing-upright and frontal-facing position (see Fig. 9.9) from

the robot’s perspective. We use HRNet [231], a robust 2D pose estimation method,
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to predict the joint locations of divers. While such posture requirements can help to

produce good predictions, they cannot completely prevent the pose estimation method

from making false predictions. Especially, scuba divers’ erratic movements often make

it extremely difficult for the pose estimation algorithm to accurately predict the poses.

Fig. 9.10 demonstrates two instances where the pose estimation algorithm fails to com-

pute the locations of elbows, wrists, or shoulder joints correctly. Originally HRNet

estimates 17 body keypoints, from which we select the following 10 keypoints: left

shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right hip,

left knee, right knee. While including the remaining seven keypoints (i.e., nose, left eye,

right eye, left ear, right ear, left ankle, right ankle) could make our feature set richer, we

observed that their predictions tend to be inconsistent across frames compared to the

other 10 keypoints. Additionally, the unselected seven keypoints require the underwa-

ter robot to constantly capture the whole body of the diver, which may not be realistic

during underwater missions due to environmental factors (e.g., waves). We find that

the pose estimation algorithm consistently captures the selected 10 keypoints from our

preliminary tests.

To create robust anthropometric data ratio (ADR) features from the predicted pose,

erroneous data must be removed from the dataset. We achieve this by formulating a

number of filtering conditions motivated by anthropometric data statistics [243]. Specif-

ically, we use the following filtering conditions, where hwmin, kth, and swmin are hyper-

parameters.

• hips are located lower than shoulders.

• knees are located lower than hips.

• hip width must be larger than hwmin.

• both hip to knee distances must be similar.

• both elbow to wrist distances must be similar.

• upper arm is slightly longer than the lower arm.

• distance between knees must be larger than kth.
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Table 9.1: Euclidean distances between the listed pairs are used to calculate the corresponding
anthropometric data (AD).

AD
No.

Pairs

1 (left shoulder, right shoulder)

2 (left shoulder, left hip)

3 (left shoulder, left elbow)

4 (left elbow, left wrist)

5 (right shoulder, right hip)

6 (right shoulder, right elbow)

7 (right elbow, right wrist)

8 (left hip, right hip)

9 (left hip, left knee)

10 (right hip, right knee)

• shoulder-to-hip distance must be slightly longer than shoulder width.

• shoulder-to-hip distance cannot be twice as large as the hip-to-knee distance.

• shoulder width must be larger than swmin.

• shoulder-to-hip distance must be larger than the sizes of the lower and upper arm.

As a result, we only keep the pose estimations that meet all the filtering conditions.

Feature Extraction

Once we obtain the filtered pose estimations, we calculate 10 anthropometic data (AD)

values using the 10 body keypoints, as shown in Table 9.1. While the keypoint predic-

tions are relatively stable, their locations in each frame constantly change as the robot

moves. Therefore, keypoints and also the AD values are distance-variant. To address

this issue and make the features distance-invariant, we propose to use ADRs as features

to represent the divers. We compute the ADRs by taking the ratios of two different

AD values, generating a total of 45 ratios from unique pairs, excluding the pairs formed
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Table 9.2: Our proposed embedding network, which takes 45-d ADR features and project them
into 16-d features.

Input: ADRs (F × 45)

Layer 1 Linear (45, 1024); Leaky ReLU; BN

Layer 2 Linear (1024, 512); Leaky ReLU; BN

Layer 3 Linear (512, 256); Leaky ReLU; BN

Layer 4 Linear (256, 16)

by identical ADs. We observed that the ADRs stay relatively consistent for each diver

even if the distance between the robot and the diver changes.

Metric Learning

Metric learning [244] is a method to learn a distance measure for maximally separating

inter-class distances in the feature space, using an appropriate distance metric. Exam-

ples of classical approaches are the K-nearest neighbor (KNN) [245] and support vector

machine (SVM) [246]. We apply metric learning when we train our proposed embedding

network (as shown in Table 9.2), and we select the triplet loss [213] L as our loss function

due to its simplicity and effectiveness. Our loss function is formulated as follows:

L(A,P,N) = max(0,D(A,P ) −D(A,N) +m), (9.2)

where A is an anchor point (reference data), P is a positive point, N is a negative

point, and m is a predefined margin. For instance, if A is a data point of diver 1, P

is another data point of diver 1, and N will be a data point belonging to one of the

other divers (e.g., diver{2,⋯,X}). By training our model with this loss function, we

enforce intra-class data points (i.e., A and P ) to stay close while increasing the distance

between inter-class data points (i.e., A and N). In [213], Euclidean distance was used

for the distance function D. While this is one of the common distance metrics, it cannot

capture nonlinearity in the data. Thus, we use cosine similarity as a distance metric in

our work.

Additionally, we created the following datasets for training the embedding network:

(1) All-class dataset (four divers and four swimmers) and (2) Diver dataset (four divers
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(a) Trained on the All-class dataset. (b) Trained on the Diver dataset.

Figure 9.11: Results of the metric learning technique (Section 9.4.1) with our proposed embed-
ding network. We visualize the 16-d features in 2D plot using t-SNE technique. We train our
embedding network with (a) All-class dataset and (b) Diver dataset. The top row shows the
clustering results on the training data, and the bottom row shows the clustering results on the
test data. In both (a) and (b), the clusters show a clear separation between the classes for both
datasets.

only). The datasets are described in more detail in Section 9.5. Our embedding network

takes 45-d features and outputs 16-d feature vectors. Interestingly, upon plotting these

16-d features from both training and test sets, they are observed to form well-defined

clusters (see Fig. 9.11). We use the t-SNE [247] technique to plot the 16-d features in

a 2D plot.

Training Models for Metric Learning and Classification

We use 10 models to evaluate the performance of the diver identification algorithm (as

shown in Table 9.3). The model names starting with All are trained with the All-

class dataset, and those starting with Diver are trained with the Diver dataset. For

All KNN, Diver KNN, All SVM, and Diver SVM models, we use only either KNN or

SVM to train for classification without using an embedding network. For All NN KNN,

Diver NN KNN, All NN SVM, Diver NN SVM, All NN, and Diver NN models, we first

pass the raw 45-d ADR features through our embedding network to generate highly

distinguishable 16-d features. We then train classifiers with the 16-d features for iden-

tification. In the case of the All NN and Diver NN models, we use a two-layer neural

network, attached with a final softmax layer to perform the multi-class classification
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Table 9.3: Network structure and online training capabilities of different models used for our
diver identification framework.

Model Name* Embedding Classification Offline Online

All KNN - KNN ✓ -

Diver KNN - KNN ✓ ✓

All SVM - SVM ✓ -

Diver SVM - SVM ✓ ✓

All NN KNN NN KNN ✓ ✓

Diver NN KNN NN KNN ✓ ✓

All NN SVM NN SVM ✓ ✓

Diver NN SVM NN SVM ✓ ✓

All NN NN NN ✓ -

Diver NN NN NN ✓ -

*All KNN and Diver KNN refer to the same model for online training. Same goes for All SVM and Diver SVM.

using the 16-d features.

9.4.2 Diver Identification Framework

With our proposed diver identification algorithm, we develop a diver identification

framework (see Fig. 9.12) using ROS [248]. The framework enables a robot to find

divers and identify them, and it is designed to be compatible with both offline (mod-

els are trained before deployment) and online frameworks (models are trained during

deployment). The goal of our proposed framework is to find a ‘target’ diver. A target

diver will be determined differently for each framework: (1) Offline framework: one of

the divers in the dataset will be assigned as a target diver before deployment, and (2)

Online framework: the robot will not have a target diver before its deployment and will

be assigned a target diver during its mission. Our framework consists of a state machine,

a diver-relative position (DRP) estimator, and a robot controller, which is built based

on Autonomous Diver-Relative Operator Configuration (ADROC) [249] pipeline. The

DRP estimator [249], which is running in the background, approximates the distance

to a diver from the robot using pose estimations and bounding box detections of the

diver. When the distance information becomes available, i.e., when the robot detects a
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Figure 9.12: Complete pipeline of our proposed diver identification framework as described in
Section 9.4.2. The yellow and green color boxes represent the states of our framework. The yellow
color boxes represent common states between the offline and online frameworks. The green color
box is only used for the online framework to perform model training during deployment. The
gray colored box shows the DRP estimation which is continuously running in the background.

diver, its motion is governed through a PID controller using information from the state

machine.

To integrate the identification algorithm, we use a state machine with the following

eight states: INIT, SEARCH, APPROACH, DATA COLLECTION, TIMED YAW,

MODEL TRAINING, IDENTIFICATION, and CONCLUSION. For both offline and

online frameworks, our system starts from the INIT state and enters either the SEARCH

or APPROACH state depending on the availability of the DRP estimation. In the

following sections, we present how each framework works in detail.

Offline Framework

After the state machine starts in the INIT state, it immediately transits and stays in the

SEARCH state until the DRP estimator detects a diver and provides DRP estimations.

Once the DRP estimations become available, the robot enters the APPROACH state.

In this state, the robot attempts to maintain a preset distance between itself and the

diver. After reaching the desired distance, the robot enters the DATA COLLECTION

state, where the robot computes the 45-d ADR features from F (a predefined number)

filtered pose estimations. With the (F × 45) ADR features, the robot goes into the

IDENTIFICATION state since the models are already trained in this framework. If the
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robot fails to match the currently observed diver with a target diver, the robot enters

the SEARCH state again after staying briefly in the TIMED YAW state. We add the

TIMED YAW state to prevent the robot from performing identification on the same

diver again. This will be repeated until the robot identifies a target diver. If successful,

it will go to the CONCLUSION state.

Online Framework

The online framework operates the same way as the offline framework up to the DATA

COLLECTION state. Since the models are not trained at the beginning, the state

machine enters the MODEL TRAINING state from the DATA COLLECTION state.

In this state, the models (e.g., SVM and KNN) are trained using (FX×45) ADR features

collected from X number of divers. Since we only train SVM and KNN classifiers at this

state, the training time is acceptable on typical robotic hardware (e.g., a mobile GPU

or CPU). Once the training is done, a target diver will be chosen. In our evaluation, we

arbitrarily select the second diver the robot sees as a target. However, our framework

has the flexibility to update the target diver as needed, e.g., through specific hand

gestures, or human-to-robot interaction. Then, the robot goes to the INIT state, and

the state machine subsequently follows the same logic as the offline framework since the

models are now trained.

9.5 Experiments

This section describes experimental setups for evaluating our proposed algorithm includ-

ing dataset creation, model building and training, and robot trials with divers. Human

data collection and trials were conducted with the approval of our institution’s ethics

oversight panel.

9.5.1 UDI Dataset

To facilitate the learning of our proposed algorithm, we need to create a dataset that

contains anthropometric data (AD) of divers. Since it is extremely challenging to find

and recruit many certified divers to collect such data in a closed-water environment (e.g.,

pool), we collect the AD data from both swimmers and divers. In total, we have data
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Table 9.4: Comparison of average accuracy for the metric learning embedding network and the
10 models on our UDI dataset. The values are in percentages.

Embedding Network Models
Dataset Type All-Class Diver All-Class Diver

Training Accuracy 97.78 97.89 97.21 97.97
Testing Accuracy 96.39 96.65 97.56 97.89

from four swimmers and four divers. To build this dataset, we ask the participants to

take frontal-facing and standing-upright postures towards the camera, and we capture

their full body images using GoPro cameras with 2-megapixel and 1080p resolution at

varying distances. We collect a total of 16, 557 images across the eight participants. We

then perform pose estimation on these images, filter out erroneous poses, and compute

the ADR features. This gives us a total of 13, 994 ADR features and their corresponding

labels, which we use to formulate the underwater diver identification (UDI) dataset. For

the filtering step, as described in Section 9.4, we heuristically set hwmin, kth, and swmin

as 10.

9.5.2 Setup

Model Setup for Offline Framework

We use two versions of the UDI dataset to train the models for the offline framework: (1)

All-class dataset (whole UDI dataset) and (2) Diver dataset (a subset of the UDI dataset

containing only divers). For All KNN and All SVM, we use the whole UDI dataset to

train. We use scikit-learn libraries [250] to implement the KNN and SVM. For the

KNN models, we set the neighbor size as 5. We train our metric learning embedding

network (as shown in Table 9.2) for 1, 000 epochs with a batch size of 512, learning rate

of 5×10
−4

, and margin, m = 0.3. We use stochastic gradient descent (SGD) as the opti-

mizer [251]. The embedding network is used to train the All NN KNN, Diver NN KNN,

All NN SVM, and Diver NN SVM models where it works as a backbone. That is, the

embedding network first brings the 45-d feature vectors down to 16-d feature vectors

then train the final KNN and SVM models with the 16-d features. Finally, to train the

All NN, and Diver NN models, we add a two-layer classification neural network after

the embedding network and train them together. We use PyTorch libraries [252] to
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implement both the embedding and the two-layer classification neural network. All the

models in the offline framework are trained on 80% of the data and tested on 20% of

the data. Table 9.4 presents the average training and testing accuracy for both the

embedding network and 10 models.

Model Setup for Online Framework

The six models (see Table 9.3) for the online framework can be trained with either (1)

45-d raw ADR features (Diver KNN and Diver SVM) or, (2) 16-d features computed

using the pre-trained embedding network (All NN KNN, Diver NN KNN, All NN SVM,

and Diver NN SVM). Additionally, we train the models with features computed from

either 50 or 100 frames to evaluate the correlation between the number of training data

and the performance of each model. To keep the online training time short, we do not

consider training the All NN model.

9.5.3 Experimental Scenarios

We use three divers in a closed-water environment to perform our experiments using

the offline and online frameworks. In the offline framework, our AUV collects ADR

features from a diver and then feeds the features through pre-trained models and gets a

prediction. If the prediction is accurate, then the algorithm concludes and enables the

robot to initiate an interaction with the diver. Otherwise, the robot turns to the next

diver. The robot repeats this for all the divers present in the scene. We assume that

the robot knows a priori the total number of divers present in the scene.

In the online framework, the robot aims to identify a diver without using pre-trained

models. To achieve this, first, the robot collects the ADR features from all the observable

divers. It then trains six models online, to create highly separable clusters of divers.

Upon being assigned a target diver (in the online case, a random selection from the

present divers), the robot uses these newly trained models to identify divers individually.

Whenever there is a correct match, the algorithm concludes without checking the rest

of the divers. If the robot is unable to find a correct match after checking all divers, it

is considered as a failure case.
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(a) Third person view
of the diver identifica-
tion process.

(b) Robot’s view during different states of the diver identification pro-
cess.

Figure 9.13: Demonstration of the proposed diver identification framework on a physical AUV
platform in a closed-water environment. Fig. (a) shows an external view of the diver interaction
process, while Fig. (b) shows some of the states in our framework from the robot’s viewpoint.

9.6 Results

We deploy the system onboard an AUV in a closed-pool environment and evaluate the

performance of the proposed system in both offline and online frameworks. Fig. 9.13 vi-

sualizes the overall diver identification framework during our deployment. As discussed

in Section 9.4.2, the AUV goes through a number of states for identifying a target

diver. The AUV’s view during three such states (SEARCH, APPROACH, and DATA

COLLECTION) are shown in Fig. 9.13b.

9.6.1 Offline Framework

In the offline framework, the models have pre-trained weights. Whenever they are given

test features to infer on, they will be able to make the prediction instantaneously. We

test the performance of all 10 models pre-trained with the All-class and Diver dataset

(see Table 9.3) on three divers placed in a closed-water environment. Table 9.5 and

Fig. 9.14a present the quantitative results of our experiments. Table 9.5 lists the average

accuracy of different models as the number of frames on which the final predictions are

performed changes. We notice that All NN KNN and All NN SVM perform the best.

This is because both these models use metric learning as their backbone to first project

the raw ADR features into lower dimensional (16-d) feature vectors that form highly

separable clusters in a 16-d hyperspace. These projected features are then used to

perform the final classification task. The bottom plot in Fig. 9.14a shows the average

accuracy of each model across all numbers of test frames. From the figure, the superior
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Table 9.5: Comparison of the diver identification accuracy of the proposed system across 10
different models. The darker colors represent higher accuracy.

Model Name All KNN Diver KNN All SVM Diver SVM All NN KNN

Framework Offline Online Offline Online Offline Online Offline Online Offline Online
Number of Frames 50 100 50 100 50 100 50 100 50 100

10 0.67 - - 0.67 0.67 0.67 0.67 - - 0.33 0.33 0.67 1.00 1.00 1.00
20 0.33 - - 0.33 1.00 0.67 0.67 - - 0.67 0.33 0.67 1.00 0.67 1.00
30 0.33 - - 0.33 1.00 0.67 0.67 - - 0.67 0.33 0.67 1.00 1.00 1.00
40 0.33 - - 0.33 0.67 0.67 0.33 - - 0.67 0.33 0.67 1.00 0.67 1.00
50 0.67 - - 0.67 0.67 0.67 0.67 - - 0.67 0.33 0.67 1.00 1.00 1.00
60 0.67 - - 0.67 - 0.67 0.33 - - 0.33 - 0.67 1.00 - 1.00
70 0.67 - - 0.67 - 0.67 0.67 - - 0.67 - 0.67 1.00 - 1.00
80 0.67 - - 0.67 - 0.67 0.67 - - 0.67 - 0.67 1.00 - 1.00
90 0.67 - - 0.67 - 0.67 0.33 - - 0.33 - 0.67 1.00 - 1.00
100 0.67 - - 0.67 - 0.67 0.67 - - 0.67 - 0.67 1.00 - 1.00

performance of All NN KNN and All NN SVM is evident. Finally, we calculate the

average accuracy across all the models (the top plot in Fig. 9.14a) and notice that the

accuracy remains almost the same. This suggests that All NN KNN and All NN SVM

can even make faster predictions using a lower number of frames while maintaining their

high accuracy.

Model Name Diver NN KNN All NN SVM Diver NN SVM All NN Diver NN

Framework Offline Online Offline Online Offline Online Offline Online Offline Online
Number of Frames 50 100 50 100 50 100 50 100 50 100

10 0.33 1.00 0.67 1.00 1.00 1.00 0.33 0.67 0.67 0.67 - - 0.33 - -
20 0.00 0.67 0.67 1.00 1.00 1.00 0.00 0.67 0.67 0.67 - - 0.67 - -
30 0.00 0.67 0.67 1.00 1.00 1.00 0.33 0.67 0.67 0.67 - - 0.67 - -
40 0.00 0.67 0.67 1.00 1.00 1.00 0.33 0.67 0.67 0.67 - - 0.67 - -
50 0.00 0.67 0.67 1.00 1.00 1.00 0.33 0.67 0.67 0.67 - - 0.67 - -
60 0.00 - 0.67 1.00 - 1.00 0.33 - 0.67 0.67 - - 0.67 - -
70 0.00 - 0.67 1.00 - 1.00 0.33 - 1.00 0.67 - - 0.67 - -
80 0.00 - 0.67 1.00 - 1.00 0.33 - 1.00 0.67 - - 0.67 - -
90 0.00 - 0.67 1.00 - 1.00 0.33 - 1.00 0.67 - - 0.67 - -
100 0.00 - 0.67 1.00 - 1.00 0.33 - 1.00 0.67 - - 0.67 - -

9.6.2 Online Framework

In the online framework, we do not use any pre-trained weights for the models. Instead,

the system first computes the ADR features from three divers, trains six models with

online training capability (see Table 9.3), and makes predictions on the three divers

using these trained models. We first use 50 frames per diver to train the models and

evaluate the diver identification performance. From Table 9.5 and Fig. 9.14b (bottom),

we notice that All NN SVM performs the best and All NN KNN shows comparable

performance. That means the metric learning technique we are using to train these
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(a) Trained Offline. (b) Trained Online with 50 data points.

(c) Trained Online with 100 data points.

Figure 9.14: Average accuracy from our experiments: (Top row): average accuracy for a specific
number of test frames across all models, (Bottom row): average accuracy of each model across
all frames.
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two models are indeed benefiting the identification task. Even if we change the number

of frames per diver to train the models to 100, we see similar trends. From Table 9.5

and Fig. 9.14c (bottom), we see that both the All NN SVM and All NN KNN achieve

the highest accuracy. Finally, from Fig. 9.14b (top) and 9.14c (top), we notice that

the number of frames used for making inferences does not have any significant effect

on the system’s performance for the online framework, as was the case for the offline

framework.

As these results suggest, our diver identification framework can successfully identify

divers within both the offline and online frameworks. In both cases, the All NN KNN

and All NN SVM models outperform the other models. Especially, the All NN SVM

model shows consistently accurate identification performance regardless of the type of

the framework and the number of frames for training and inference. Additionally, we

show that the models with our embedding network achieve higher classification accuracy

than the models without the network. More importantly, our results demonstrate that

the ADR features are distance and photometric-invariant considering the fact that (1)

our data has been captured at varying distances, and (2) images from the camera (0.9-

megapixel, 720p resolution) that we used to build our training dataset with and the

robot camera (2-megapixel, 1080p), are significantly different. Fig. 9.13a and Fig. 9.13b

show sample pictures taken by these two cameras, respectively.

9.6.3 AUV Trial Failure Cases

The PID controller in our robot is highly sensitive to proper parameter tuning. As a

result, the robot occasionally fails to stabilize its motion which resulted in unexpected

behavior of our state machine. For instance, during some experiments, the state ma-

chine could not reach the IDENTIFICATION state at all, and remained between the

SEARCH and APPROACH states. However, when the controller remained stable, our

robot successfully identified divers by correctly following the logic of our state machine.

In this paper, we focus on developing a robust identification algorithm and leave the

improvement of the robot controller as future work.
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9.7 Conclusions

In this chapter, we present two novel methods to identify divers using facial features

and ADR features, respectively. For the diver identification system, we leverage a series

of data augmentation steps and a dimensionality reduction method to learn discrimi-

native features from heavily-obscured scuba diver faces. Our results demonstrate that

the proposed pipeline outperforms the SOTA face recognition algorithms for the diver

identification task. For the diver identification with the proposed ADR features, we

design an embedding network that can project the ADR features to a 16-d hyperspace,

making them highly separable. We incorporate our diver identification algorithm within

both offline and online frameworks. This enables the AUV to identify divers even if we

do not have their data in our dataset prior to deployments. The results show that the

ADR features can be captured and used for identification even if divers’ bodies and

faces are heavily obscured. Together, these diver identification methods make substan-

tial progress toward enabling secured HRC missions. This chapter marks the end of

Part III. In Part IV, we discuss robotic platforms that we designed to develop and test

research presented in this thesis.



Part IV: Robotic Systems

Development Toward On-board

Object Detection

Many AUVs have been introduced since the appearance of the first AUV in 1957. How-

ever, only a small number of AUVs are open-source, and most of such AUVs’ computa-

tional power is not powerful enough to run state-of-the-art computer vision and machine

learning models. To handle this matter, Chapter 10 presents two open-source robotic

systems designed for developing, deploying, and testing robotic algorithms for under-

water environments. First, we introduce LoCO, a low-cost open-source AUV. LoCO

is a general-purpose, vision-guided AUV rated to a depth of 100 meters, and a small

size AUV that is single-person-deployable. LoCO is composed of off-the-shelf and 3D

printed parts. Additionally, it has an open and modular design that can be expanded

to provide additional capabilities. This feature allows users to install additional sensors

as needed, unlike most proprietary AUVs. The other system is a data collection device

called HydroEye. We design HydroEye to reduce the overhead of robotic deployments

and assist a scuba diver in collecting visual and other sensory data. HydroEye is a

single-person-portable device, and it provides instant access to the collected data via ei-

ther Wi-Fi or tether. Both systems have been intensively used to develop the algorithms

presented in this thesis.
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Chapter 10

Robotic Systems Development

Toward On-board Object

Detection

While AUVs are a critical instrument for conducting research underwater, they are

generally costly and hard to maintain. In this chapter, we propose two open-source

robotic systems developed to assist in the presented research of this thesis as well as to

lower the barrier to researching the underwater domain. One of them is a Low-Cost and

open-source AUV (LoCO). The other is a device (HydroEye) specifically designed to

aid a scuba diver in collecting visual and other sensory data. In the following sections,

we provide the details of the AUV and device.

10.1 Motivation

The underwater domain is a high-risk environment for robots (e.g., risk of water leaks

and AUV losses during deployments). Especially when we test under-development al-

gorithms, the risk is even higher. Additionally, commercially available AUVs are pro-

prietary and less modular. For example, with our Aqua AUV [135], because of its tight

packaging and power constraints, it is extremely difficult to add more sensors without

compromising other systems. These factors have motivated us to develop a low-cost,
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open-source, modular, and expandable AUV to support our research with low mainte-

nance costs and development overheads.

Person-portable devices [253, 254, 255] make it more convenient to gather data

than using robots since it avoids the overhead of robot deployments (e.g., arranging

tether cables for remotely operated vehicles (ROVs), preparing sets of batteries for

AUVs, and finding a safe spot to deploy AUVs). It is especially useful to use the

device if an environment is challenging to navigate with ROVs and AUVs (e.g., cave

exploration [254]). Because of these reasons, we have also investigated and built a

specialized device that can collect sensory data, which we discuss more in detail in

Section 10.3.

10.2 LoCO

LoCO [167]
1

is designed to be an all-purpose AUV, adaptable to a variety of missions.

It is an open platform so additional sensors can be installed. In its base configuration,

LoCO is a dual-camera, vision-guided AUV with three thrusters. The following sub-

sections describe the robot’s system design and software, which enable us to deploy the

proposed algorithms.

10.2.1 System Design

Overall System Layout

LoCO is comprised of two water-tight enclosures, each containing various components,

with one thruster mounted between the enclosures and two mounted behind, as seen in

Fig. 10.1. While a number of designs are considered, we select the two-enclosure design

for a variety of reasons. Firstly, it provides space in between the enclosures, which can

be used to mount sensors, thrusters, or manipulators in the future. Additionally, we can

distribute components into two enclosures, allowing us to use smaller enclosures than

the design with one enclosure. This two-enclosure design reduces the LoCO’s forward

profile, and less resistance will be applied to LoCO when moving forward. Finally,

1
The author has contributed as one of the main developers and worked on configuring a mobile GPU,

designing the power distribution system, and developing an autopilot system.
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Figure 10.1: 3D model of LocO AUV with IMU, camera, thruster, and robot frames. Image
courtesy of the IRV Lab.

the separation into two enclosures enforces a base level of modularity. Most control-

related electronics are in the left-hand enclosure, with the computational hardware for

deep learning inference in the right-hand enclosure. While any hardware modification

requires changes throughout the system, changes or replacements can be made with

minimal impact on the layout of internal components.

Computing Systems and Sensors

LoCO has two primary computer systems: a Jetson TX2, located in the right enclosure

for deep learning inference, and a Raspberry Pi 4 (4GB), located in the left for control.

The Jetson TX2 is mounted on a Connect Tech Orbitty carrier board for interfacing.

The Raspberry Pi is used to process images from the camera in the left enclosure and



142

used as the controller interfacing with the Pixhawk autopilot over a serial connection.

The Jetson and the Raspberry Pi are connected via Ethernet with a Cat5e cable. LoCO

was designed with a stereo vision system in mind. We are currently investigating several

stereo cameras, but finding the camera small enough for the enclosure’s diameter has

proved challenging. Currently, two monocular cameras are mounted in each enclosure.

LoCO also employs a pressure sensor to measure its depth under the surface. The sensor

is mounted on the backplate of the left enclosure. There is also an inertial measurement

unit (IMU) contained within the Pixhawk autopilot unit. Lastly, while it is not a part

of the design, we are currently working on integrating a sonar altimeter, as it is needed

for our proposed localization algorithm in Chapter 7.

10.2.2 Software

LoCO has a variety of computing devices: a Raspberry Pi 4, an Nvidia Jetson TX2, a

Pixhawk autopilot unit, and an Adafruit Trinket Pro microcontroller. The Raspberry Pi

and Jetson TX2 both run versions of Ubuntu, a popular open-source operating system.

They both have ROS, and the Jetson TX2 has deep learning libraries (e.g., Pytroch [256]

and Tensorflow [257]) with a ROS interface, which enables the Jetson TX2 to run deep

learning inferences using images coming from the Raspberry Pi. The Pixhawk runs

a real-time open-source OS with ArduSub, and the Trinket is flashed directly with

open-source software. The software which allows LoCO to function as an untethered

autonomous vehicle rather than an ROV is distributed across the computing devices

and consists of a mixture of ROS packages, Ardusub, and Arduino code. All of this

software is under some form of permissive, open-source license, which makes LoCO’s

software stack completely accessible for users to explore, expand, and enhance.

State Estimation

Several options are under development for state estimation in LoCO. Firstly, the Pix-

hawk provides an IMU-based state estimation using the Extended Kalman Filter [258].

While this is useful, LoCO currently uses the robot_localization [259] ROS pack-

age to estimate its orientation via IMU data directly from the Pixhawk’s IMU, as this

provides greater control over the tuning of the Extended or Unscented Kalman filters

provided by the package. Additionally, the package allows the fusion of multiple sources
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of information into one estimate, so if additional IMUs or sources of information became

available, they could easily be integrated. Two possible sources of this information are

currently in development: a downward-facing camera for monocular visual odometry

and an odometry estimate based on a combination of thruster inputs and a hydrody-

namic motion model of LoCO.

10.3 HydroEye

Figure 10.2: Fully assembled HydroEye on the left side and the 3D CAD model on the right
side. Purple: a stereo camera, Blue: a battery, Green: a buck converter, Red: a mobile GPU,
and Black: a Wi-Fi antenna.

While a single person can deploy LoCO, it still has overheads in preparation for

deployments (e.g., charging a set of four batteries, ballasting each tube, and checking

wiring connections). To reduce the overheads and accommodate a variety of off-the-shelf

sensors, we have created a custom data collection device called HydroEye (Fig. 10.2),

which is designed to be hand-carried by a swimmer or a scuba diver to assist in data

collection. Our goal is to reduce the time and workforce overhead in data collection.

We design it with the following desiderata:

• Portability: The device needs to be sufficiently small to be carried by a single

person underwater.
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• Minimum operation time: The device should record data for at least an hour,

which is a typical dive duration from a scuba tank.

• Easy access to the collected data: We occasionally need to check the quality

of the recorded data when a diver rises back to the surface. Thus, it is essential to

access the data without opening the device to minimize the risk of water leaking.

• Buoyancy control: The device in salt water is more buoyant than the one in

fresh water. To deploy the device in different water bodies, the weight of the

device needs to be easily adjustable.

• Easy to start and stop data recording: The recorded data can take large

disk space for storage. Thus, we should be able to start and stop the recording

process as needed to minimize disk usage.

10.3.1 System Design

HydroEye consists of a water-tight enclosure, two end caps, laser-cut medium-density

fiberboard (MDF), 3D printed mounts, and electrical parts. We use a 14.8 V lithium-

poly (LiPo) battery to power the system. The buck converter steps down the voltage

from 14.8 V to 5.2V, which is the required input voltage of our mobile GPU. The stereo

camera is powered by the mobile GPU via a USB port. Our bench test results show

that the device can record data for up to four hours on average. Table. 10.1 presents

the detailed specification of each component.

Table 10.1: Electrical Parts list of HydroEye

Parts Name Power-related Specification

Buck Converter Input DC 9-24V, Output 5.2V/6A/30W
Battery 4S 14.8V LiPo Battery 2200mAh, Discharge Rate: 50C

Mobile GPU Input 5V and up to 4A, 10W and 5W modes
Stereo Camera Power Consumption Max 1.15W, Min 0.77W, Current Max 1.4A, Min 0.4A

10.3.2 Deployment and Usage

Before deploying HydroEye underwater, we first connect the battery to the buck con-

verter and assemble the enclosures. When the GPU is on, it activates its access point
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(AP), also known as mobile hotspot. Then, we connect to the AP and start our record-

ing process over Secured Shell (SSH) using a laptop. After these steps, either a scuba

diver or swimmer carries the device by hand and collects data as needed (Fig. 10.3).

Once data collection is done, we can reconnect to the AP and transfer the data over

SSH. This allows us to check the quality and integrity of the data during field deploy-

ments without disassembling the enclosure, which can potentially cause water leaks in

the system. Additional data can be collected by starting the process via SSH again.

When the data collection is completed, the device will be powered down by removing

the rear-end cap.

Figure 10.3: A swimmer holds HydroEye and collects the data during a pool evaluation.

10.4 Conclusion

In this chapter, we describe two robotic systems, an AUV (LoCO) and a data collection

device (HydroEye), to aid us in developing and deploying our algorithms (e.g., object

detection, localization, and exploration). We briefly present both systems and their

underlying design philosophies. In the next chapter, we summarize the presented re-

search in this thesis and discuss potential research directions to enhance the autonomy

of robots further.



Chapter 11

Conclusion and Future Work

The research presented in this thesis has focused on understanding the underwater do-

main’s unique robotic challenges, addressing them with algorithms, and implementing

these algorithms on real robotic platforms. The algorithms empower field robots to

manage large-scale and time-sensitive tasks without depending on commands from op-

erators. In this chapter, we will summarize our presented research, introduce the future

directions of the research, and conclude with final remarks.

11.1 Summary of Presented Research

Part I, which consists of Chapter 2 through Chapter 5, introduced significant first steps

toward overcoming perceptual problems in challenging environments. In Chapter 2,

we presented the first approach of using a deep learning-based method [29] to detect

debris with AUVs and address visual challenges underwater. Chapter 3 presented Trash-

Can [30]. It is the first publicly available underwater debris image dataset and consists

of 7, 212 pixel-level annotated images of debris, robots, and a wide variety of undersea

flora and fauna. Collecting imagery of underwater debris is inherently difficult and dan-

gerous to divers, and building such a dataset requires a work-intensive process. This

makes TrashCan a substantial contribution to the robotics community and beyond. In

Chapter 4, we presented a generative approach [31] to producing realistic fake debris

images to augment existing datasets. This approach minimizes the data collection ef-

forts, which results in reducing the risk and labor issues of such efforts. Chapter 5
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took one step further from augmenting existing datasets. We presented a novel image

blending method generating images and their pixel-level annotations together. This sig-

nificantly reduces labor-intensive dataset labeling efforts for creating datasets to train

object detection models.

Part II, which is composed of Chapter 6 and Chapter 7, brought forth novel methods

to find and identify objects underwater. Our research introduced in Chapter 6 fuses

depth and instance segmentation information with an APF. This research enables robots

to keep flexible distances to objects using the semantic information of the objects. In

Chapter 7, we presented a low-cost approach by fusing bathymetry data of underwater

environments with depth and altitude data from an AUV using real-world bathymetry

data. This approach enables the localization of AUVs using low-cost sensors.

Part III, which consists of Chapter 8 and Chapter 9, introduced novel algorithms

providing AUVs with HRC capability by enabling them to approach and identify divers.

These algorithms can reduce the physical and cognitive load of divers as well as augment

robotic autonomy with human knowledge. Chapter 8 presented the first underwater

human-approaching robotic algorithm without making divers wear special sensors or

move. This algorithm allows AUVs to find a diver and achieve diver-relative positioning

autonomously with only a monocular vision and prior knowledge of average human

shoulder width. Chapter 9 introduced two novel diver identification algorithms for AUVs

using divers’ face and body pose information with a visual sensor. These algorithms

are designed to allow AUVs to perform HRC tasks securely by collaborating with only

authorized divers, even when there are multiple divers around them.

Part IV, which is composed of Chapter 10, presented two robotic systems designed

for developing, deploying, and testing robotic algorithms for underwater environments.

These systems have been intensively used to develop the research presented in this

thesis. In Chapter 10, we first introduced LoCO, a low-cost open-source AUV. LoCO is

a general-purpose, vision-guided AUV rated to a depth of 100 meters and a small size

AUV that is single-person-deployable. LoCO is composed of off-the-shelf and 3D-printed

parts. Additionally, LoCO has an open and modular design that can be expanded to

provide additional capabilities. This feature allows users to install additional sensors as

needed, unlike most proprietary AUVs. The second system was a data collection device

called HydroEye. We designed HydroEye to reduce the overhead of robotic deployments
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and assist a scuba diver in collecting visual and other sensory data. HydroEye is a single-

person-portable device, and it provides instant access to the collected data via either

Wi-Fi or tether.

11.2 Future Work

Multiple directions can be considered to extend the research presented in this thesis.

11.2.1 Efficient learning for robotic perception

Humans can learn about new objects from only a few images or simple descriptions.

However, robotic perception algorithms often require training with thousands of images

to recognize objects accurately, as shown in Part I. This is because the general percep-

tion algorithms do not utilize any background information that can aid their learning

process. One future direction for improvement is making object detectors less depen-

dent on datasets to tackle this limitation. Zero-shot learning (ZSL) is one potential

approach for this. It links unseen and seen objects using supplementary information,

which embeds object features. Using language descriptions of objects as the supple-

mentary information can be a promising start. Furthermore, another potential area

for improving robotic performance lies in designing convolutional neural networks light

enough to run this process on-board AUVs with acceptable performance.

11.2.2 Risk-aware semantic mapping

Demands for embedding semantic information of surroundings to a map have increased

as robots need to perform complex tasks (e.g., grasping and transporting). However,

there is still a gap between extracting and utilizing the semantic information from the

semantic map. One viable direction for future refinement is developing a model to

predict risks given the semantics of observed objects and the geometry of surroundings.

Such a model would bridge the gap and allow robots to assess risks continuously during

their tasks. This would potentially provide safer navigation capability to robots.
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11.2.3 Physical interaction ability for robots

Robots need the means to interact with their environment to handle physical tasks

autonomously, and so it is crucial to add a manipulator to AUVs to augment the physical

interaction ability of the AUVs. While AUVs with manipulation capability already

exist, open-source AUVs supporting such capability are not present. The addition of

the manipulator to the AUVs will play a key role in developing a robotic system that

can perform tasks (e.g., picking up underwater debris autonomously after finding and

identifying them) fully autonomously. Using LoCO (Chapter 10) as a robotic platform

to add a manipulator would be a good starting point for developing such open-source

AUVs. There are several factors that need to be considered for adding a manipulator

to LoCO, including material, the size of the manipulator, and installation location on

the AUVs. Therefore, collaborating with mechanical systems experts to optimize the

design for AUVs would be another possibility to pursue this research direction.

11.3 Concluding Remarks

Our research presented in this thesis gives a new perspective on developing deep learning

models for underwater robotics, and the outcome is highly generalizable. This research

can be used to operate robots in any visually degraded cases, such as driving in severe

weather, underwater pipeline inspection, search and rescue with drones in bad visibil-

ity, and more. We believe we will have robotic systems that can explore unstructured

environments in the near future, and we hope this thesis contributes towards realizing

such systems. More importantly, we would be pleased if our research could benefit soci-

ety through addressing sustainable environmental protection, thusly improving human

well-being.
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Appendix A

Selected Simulation Results from

Each Lake

We tested five unique paths per each lake and each motion. We select one case from

each lake and motion type, and present our evaluations for each lakes with three types

of figures: Top view, zoomed-in view, and motion estimation on x, y, z axis. For each

lake, linear cases are shown in Figs. A.1 and A.2; mixed cases are shown in Figs. A.3

and A.4.
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Top View Zoomed-in View Error(m) on x,y,z axis
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Figure A.1: Localization performance of the four algorithms for an AUV with linear motions
(Best readability at 2x zoom).
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Top View Zoomed-in View Error(m) on x,y,z axis
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Figure A.2: Localization performance of the four algorithms for an AUV with linear motions
(Best readability at 2x zoom).
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Top View Zoomed-in View Error(m) on x,y,z axis
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Figure A.3: Localization performance of the four algorithms for an AUV with mixed motions
(Best readability at 2x zoom).
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Top View Zoomed-in View Error(m) on x,y,z axis
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Figure A.4: Localization performance of the four algorithms for an AUV with mixed motions
(Best readability at 2x zoom).



Appendix B

ROW-SLAM: Under-Canopy

Cornfield Semantic SLAM

Most existing robot weeding algorithms focus on early-season weeding. During this

time, since the canopy is not closed, usually a reliable GPS signal is available. Further,

the robots can obtain top-down views, which are convenient for the detection and local-

ization of weeds. However, mid-season robotic weeding still remains an open problem

where the robot must operate under the canopy. During this season, detecting corn

stalks and localizing them in a global coordinate frame is extremely challenging because

there is very little space between the camera and the plants, and the camera motion

is primarily restricted to be along the row. To overcome these challenges, we present

a multi-camera system where the side camera (facing the plants) is used for detection,

whereas the front and back cameras are used for motion estimation. Our proposed

algorithm and evaluations are presented in detail in the following sections.

B.1 Related Work

The topic of robotic weed control [260] has been extensively studied over the last decade

from various viewpoints: weed detection, field coverage, and vehicle development. Most

recent weed control robots have been developed in the form of drones and ground

vehicles. While drone-based approaches [261] can cover large areas, they only provide

weed information to manage weeds via ground vehicles (e.g., applying herbicide) [262].
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Recently, Wu et al. [263] proposed a method using ground vehicles with downward-

looking cameras to recognize weeds and remove them with end effectors. However, such

an approach could fail as the crop canopies close and block the top view.

Additionally, Sivakumar et al. [264] use a front view camera to predict a vanishing

point and corn lines for navigation under-canopy tasks. However, in the front view

many details of the objects in the narrow corn row are lost due to the viewing angle. In

Sec. B.4.3, we compare against their method for corn stalk plane estimation. Zhang et

al. [265] use side view for corn stalk counting, but we show that side view also experiences

frequent occlusion. To get accurate semantic features (i.e., corn stalks, ground plane,

corn stalk plane) from the map, we propose to combine the input from multiple views.

SfM [266] is one of the classical methods available to obtain the 3D location of

the features. In our application, since there is very little space and frequent occlusion

between the camera and the plants, the camera motion is also restricted. Classical SfM

strategies perform poorly for estimating the motion when observing only the plants.

Hasheminasab et al. [267] proposes to assist the SfM pipeline with GPS signals. Since

GPS is not accurate enough for our application, we use SLAM odometry from the back

camera and the front view corridor estimation to assist the SfM process using the side

view.

For localization in outdoor environments, SLAM with RGB input [268, 269, 270]

has been widely used. However, the localization accuracy of SLAM is sensitive to

dynamic features. Recent works [271, 272] adopt neural networks to detect moving

objects and remove their features. The remaining static features are then used to build

the map. In our application scenario, most of the features above ground are susceptible

to unconstrained motion due to the interference from wind or robot motion, making

it challenging to detect dynamic features. So we select the ground view as input for

the SLAM module to ensure the static map assumption. In Sec. B.4.4 we compare the

performance using different views to support this choice.

Another aspect of obtaining semantic features is object detection. Some recent

works [273, 274, 275] build offline approximation models for the objects of interest and

detect them by model matching while building the map. However, such a method is

unsuitable for corn stalk detection due to the lack of structured shapes in the non-

uniform canopy. The dense occlusion from the leaves and the weeds makes it even more
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challenging to detect corn stalks by matching offline models.

Recent advances in deep learning allow accurate real-time object detection [276] and

detect a wide range of objects from a single model with a large amount of data. Such

advances have enabled adopting deep learning-based object detection in agricultural

applications [277], and many studies [278] apply the object detection to detect weeds.

However, these approaches are limited because they (1) require a large amount of weed

data to train the models which is challenging to obtain, (2) can only be used for the

field that existing weed information is previously known, and (3) may need a survey

of a target field to collect field-specific weed information and its visual data before the

deployment in a new field. In contrast, we focus on detecting corn and consider the

remaining as weeds. Our approach can be applied to a broader range of fields and

growing stages since corn has fewer variants compared to weeds.

To associate object detection across frames, object tracking algorithms [279] with vi-

sual sensors have been proposed to track a wide range of objects (e.g., pedestrians [280],

vehicles [281], sports players [282], crops [283, 284]). The tracking algorithms gener-

ally use an estimation model and data association method such as optical flow [285],

Kalman filter, and Hungarian algorithm to associate detection results from the previous

frame to the next frame. In our pipeline, we use Simple Online and Realtime Track-

ing (SORT) [286] due to its speed and accuracy, as demonstrated on the MOT15 [287]

dataset.

In this work, we show that robotic weed control in mid-season corn row poses unique

challenges to existing SLAM algorithms. With our system design and combining mul-

tiple existing algorithms, the results demonstrate that we can overcome the challenges.

B.2 Problem Formulation

We take as given that our environment consists of a field with corn planted in rows and

have a vehicle that can traverse the field. A camera frame is rigidly attached to the

vehicle and moves under the corn canopy with three cameras (one in the front-facing

along the row, one on the side facing the corn stalk plane, and one on the back facing

the ground as shown in Fig. B.1).

Our goal is to detect the corn stalks and localize them in the global coordinate
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Figure B.1: (Top) Proposed pipeline of ROW SLAM: Our pipeline takes images from {front,
back, side} cameras and yields 1) IDs for each corn (denoted with C{a,..,e} in the scene, and 2)
3D positions of the corn stalks (denoted by yellow cylinders). (Bottom-Left) Proposed robot
design with multi-view cameras. (Bottom-Right) A 3D reconstruction sample of the corn field.
Beige and green plane represent ground and corn stalk plane, respectively. Each camera pose is
displayed separately.

frame. Therefore, we formulate this problem as a semantic SLAM problem where we

aim to build a map with semantic features (corn stalks, corn stalk plane, and the ground

plane). We choose corn stalks as the target semantic feature instead of weeds because,

unlike the corn stalks, weeds in the field have various species and appearances. They

also tend to vary across fields and regions. As a result, corn detection can be more

consistent and robust than weed detection. Once corn stalks are identified, we can treat

the remaining plants as weeds.
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Table B.1: Summary of Notations

Notation Description

np, dp

Normal vector and distance to the ori-
gin for the corn stalk plane (shown in
Fig. B.2)

ng Normal vector for the ground plane

vl

Intersection of the ground plane and
the corn stalk plane, also the orienta-
tion of the corn row

T
Relative transformation between se-
quential side camera poses

Bold uppercase letters for matrix, bold lowercase for column vector, normal ones are scalar.

B.3 System Overview

In this section, we introduce the necessary mathematical notations in Table B.1 and

describe our system’s hardware. We discuss the details of our approach for 3D corn

stalk detection and localization next.

B.3.1 System Description

Our hardware system consists of three cameras (Fig. B.1 Bottom-Left). The front and

side cameras (Intel Realsense D435) publish RGB images and depth images at 30 Hz.

The back camera (Intel Realsense D435i) has a built-in IMU and is mounted at an angle

facing the ground. The back camera publishes RGB and depth images at 30 Hz, gyro

at 400 Hz, and accelerometer at 250 Hz. We use ROS for robot control and routing

sensor data. For our experiments, we mount the system on a small 4-wheel rover from

Rover Robotics.

B.3.2 Method Overview

As shown in Fig. B.1, we use RGB images from the side view camera for corn stalk

detection. The detections only localize the stalks in 2D. Thus, to find the 3D position

of the detected corn stalks, we also need to find the 3D pose of the corn stalk plane.

We address the corn stalk plane estimation problem in two parts: (1) finding the plane
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Figure B.2: Illustration for the multi-view SfM strategy. The relative camera pose (mint) is
given by the SLAM module, and feature matching is masked by detected bounding boxes. np

is the plane normal of the corn stalk plane, and dp is the distance between the corn stalk plane
and the left camera center.

normal direction, np, and (2) finding the distance from the camera center to the plane,

dp, shown in Fig. B.2.

We use the front and back camera to assist with the estimation of the corn stalk

plane np and dp. With the RGB-D input from the front view camera, we estimate the

ground plane normal direction ng and the direction of the corn line vl. The corn stalk

plane orientation is found by the cross product of these two vectors.

np = ng × vl (B.1)

Then, we use the corn stalk plane normal np, combined with side view object de-

tection results and SLAM odometry T as the input for the Multiview SfM module to

estimate dp. Before going through the details of this module, we first introduce the

detection and tracking.

B.3.3 Corn Stalk Detection

We implement our corn stalk detection model using Faster R-CNN [288] with MobileNet

V3 [289] as the backbone and Fully Connected Network (FCN) as a head. We select

MobileNet to provide fast inference, thus preventing the deep detection model from

being a bottleneck in our pipeline. The backbone can be replaced with a larger network
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such as Resnet-18, -34, -50 [88] to improve the accuracy of the model. We train our

model with pre-trained weights using the COCO dataset [65], and refine further using

our corn stalk dataset.

B.3.4 Corn Stalk Tracking

With the outputs from the detection model, we implement the corn stalk tracking

pipeline using (1) optical flow with centroids [290], and (2) Simple Online and Realtime

Tracking (SORT) [286].

Optical Flow

We build the corn stalk tracking algorithm by applying optical flow and the corn detec-

tion results. The model detects bounding boxes for each corn stalk every 200 frames,

and the centroids of the bounding boxes are calculated. After we obtain the centroids

from the output of the detection model at frame X, the iterative Lucas-Kanade method

with pyramids [291] is used to track each centroid using optical flow from frame {X+1}
to {X + 199}.

SORT

SORT performs four actions for each input frame: detection, estimation, data associa-

tion, and update tracking identities. The detections from Faster R-CNN are propagated

to the next frame using a linear constant velocity model. The results are also utilized to

update the target state with the Kalman filter [292]. When a new detection is obtained

from the next frame, the Hungarian algorithm [293] is used to associate detections from

the previous frame to the current frame using the intersection-over-union (IoU) metric.

When the IoU metric is below a predefined threshold, then new identification of the

detection is created.

B.3.5 Corn Stalk Plane Estimation

Plane Normal To get the ground plane pose, we first use the front view RGB-D input to

compute the point cloud of the scene, followed by color thresholding and RANSAC [294]

plane fitting to extract the ground plane. The points are usually denser when closer
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to the camera center, so we downsample the ground plane inlier points before applying

principal component analysis (PCA). Since the corn row is narrow (≈ 70cm) and the

corn line is parallel to the corn row direction, the two eigenvectors with the largest and

smallest eigenvalues from PCA indicate the directions of the corn line vl and the ground

plane normal ng, respectively. The corn stalk plane normal is then computed by the

cross-product of these two vectors.

Plane Distance Across different frames, the motion of the features on the corn

stalks can be modeled by planar homography. However, instead of doing the full SfM

purely on the side view input, we find it much more stable if we use the ground features

to estimate the camera trajectory. We thus use the images from the back camera,

providing a predominantly ground-plane view to avoid the unstable features from the

corn leaves and weeds. With these images, we use the off-the-shelf RTAB-Map SLAM

[270] package to perform visual SLAM and use the Sigma Point Kalman Filter [295]

to fuse the SLAM odometry with IMU input. The resulting odometry runs at 200 Hz.

After calibrating the back view and side view cameras, we can use the camera trajectory

as is. Combining this with the estimated corn stalk plane normal, we formulate plane

distance estimation as the following least square problem over re-projection error (shown

in Fig. B.1 as the Multiview SfM block):

Given two side view RGB frames I1, I2, the relative transformation T
2
1 between their

camera poses (where R and c is the rotation and translation component) and the corn

stalk plane normal np, we want to estimate the plane distance dp, as shown in Fig. B.2.

We first run Faster R-CNN on I1, I2 to get bounding boxes for detected corn stalks.

Next, we compute SIFT features f1, f2 for I1, I2 only within the regions defined by

the bounding boxes, and then use cross-matching and ratio test to find good matches

between f1, f2. For each matched pair, let (u1, v1) and (u2, v2) be the corresponding

pixel coordinates, K and λ1 respectively be the camera intrinsic matrix and the depth

for the first feature.

Letting x1 = [u1 v1 1]
T

, the 3D position of f1 can be expressed as: λ1K
−1
x1.

Since we assume the feature lies in the corn stalk plane, according to the plane

equation

λ1n
T
pK

−1
x1 + dp = 0 (B.2)
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We can rewrite λ1 in terms of dp:

λ1 = −dp/nT
pK

−1
x1 (B.3)

After applying the rotation R and translation c, the projection of the 3D position

of f1 in the second camera frame can be expressed as:

λ1KRK
−1
x1 +Kc (B.4)

If we substitute Eq. B.3 in Eq. B.4 we can rewrite Eq. B.4 as follows:

−dp [l0 l1 l2] + [s0 s1 s2] (B.5)

where,

[l0 l1 l2]
T
=

−1

nT
pK

−1x1

KRK
−1
x1 (B.6)

[s0 s1 s2]
T
= Kc (B.7)

The projected pixel position of f1 in the second camera (u′2, v′2) is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u
′
2 = (−dpl0 + s0)/(−dpl2 + s2)

v
′
2 = (−dpl1 + s1)/(−dpl2 + s2)

(B.8)

We can linearize the re-projection error (u2 − u
′
2, v2 − v

′
2) with respect to dp so

it can be estimated by least squares and RANSAC. However, notice that the least

square robustness is sensitive to the second term Kc in Eq. B.4. So when applying this

algorithm, we need to make sure the translation scale is above a threshold to ensure

robust triangulation.

B.3.6 3D Localization

The 3D position of a corn stalk is obtained by the projection of the bounding box cen-

troid onto the corn stalk plane. To show that it is more robust than directly using

RGB-D input, we compare against RANSAC Plane Fitting in Sec. B.4.4. We also use
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the tracking module to link the 3D corn stalk positions with corn IDs. Such associa-

tion across multiple frames allows us to reject outliers and false positives, making the

localization more robust.

B.4 Experiments and Results

We present our data collection procedures, followed by the evaluation metrics for our

method. Then we introduce the baseline methods we compare against.

B.4.1 Data Collection

The rover is controlled by a human operator to drive at around 0.3m/s. To provide

additional control of imaging conditions, we used a wheeled arch platform to go over

the rows and provide cover for the rover. In the future, we are planning to combine

the rover and the cover into a single robotic platform. Our collected dataset includes

8 different corn rows where 4 of them are from conventional fields, and the other 4 are

from organic fields. We collected data across different growing stages throughout the

mid-season (between V5 stage and V12 stage, late June to early August in Minnesota,

USA).

B.4.2 Evaluation Metrics

We perform offline evaluations using the dataset collected in two different aspects, de-

tection accuracy and localization. For evaluating the corn detection module, we label

763 images and separate them into 563 training images (235 images from conventional

fields and 328 images from organic fields) and 200 test images (100 images from each

field type). Training and test dataset images for each field type are picked from different

rows to reduce the correlation between the datasets and provide an accurate measure

of the generalization capability of our network. For localization under the canopy, it is

difficult to get high-accuracy GPS signals reliably. So we manually measure the distance

between neighboring corn stalks and use the corn stalks as landmarks along a straight

line to evaluate the localization accuracy. We first line fit on the camera trajectory

and project predicted target positions to the fitted line to reduce their dimension to

one. To remove the duplicated predictions for a single target, we compute its nearest
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Figure B.3: Corridor projection of the corn row. Two corn lines (blue) are parallel and intersects
at the vanishing point (red). Due to occlusion, the corn lines are usually not clearly visible.

neighbor from the world measurements for each predicted corn stalk position. The dis-

tance error ϵ1 is computed as the mean absolute error of the neighboring corn stalks

distance between prediction and real-world measurements. Finally, we measure the

tracking variance through re-projection error ϵ2. After accumulating the 3D position

measurements for each corn stalk, we compute the mean position of the centroids and

re-project them back to each frame. The re-projection error is computed by the mean

pixel error between the centroids and the centroids of the bounding boxes proposed by

the tracking module across all the frames.

B.4.3 Baselines

SLAM Input As the SLAM pipeline is sensitive to moving objects in the scene, we

compare the robustness and accuracy of SLAM while using different input views. Specif-

ically, we replace the SLAM input in Fig. B.1 with the front camera view or side camera

view and re-run the Semantic SLAM pipeline.

Corridor Prediction The corridor prediction method replaces the corn stalk plane

prediction module in Fig. B.2. It is also based on the planar approximation of the corn

row. Since the corn stalk planes on both sides are parallel, their intersection line with

the ground plane must also be parallel. Therefore by projective geometry, they intersect

in the image plane at the vanishing point (Fig. B.3). After obtaining the 3D pose of the

ground plane, the vanishing point can be used to get vl. The corn stalk plane normal

np can be computed by the cross product of vl and ng. Then, dp can be obtained by

the 3D position of any point along the corn line since it is also on the ground plane.

It is known that color thresholding yields unreliable results [264] for vanishing line
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Table B.2: Faster RCNN Corn Detection Accuracy (%)

Conventional field Organic field

AP 26.2 47.8
AP50 83.1 89.1
AP75 9.3 46.6

Figure B.4: The reconstructed point cloud of a corn row and the estimated corn stalk position
(red cylinders) from ROW SLAM.

detection. Thus, we combine the ResNet34 head with a 3-layer multi-layer perceptron

to predict the vanishing point pixel location and two slopes for the corn line. We do

not predict the full parameters for the two lines so that we can enforce the projective

geometry.

RANSAC Plane Fitting The RANSAC plane fitting method replaces the multi-

view SfM module in Fig. B.2 for the estimation of dp. After obtaining the side plane

normal np, one way to estimate dp is by direct observation of the 3D scene in the side

view. Therefore to support our claim on the low observability of the corn stalk plane,

we present plane fitting in the side view as another baseline method. The detected

object bounding boxes are used to find candidate points in the corn stalk plane. We

only need the 3D position of one selected point with the plane normal to compute dp.

Then RANSAC is applied to make the estimation robust.

Optical Flow Tracking To ensure high localization accuracy, we use SORT as our

tracking module which runs detection at every frame and uses the Kalman Filter to

make the tracking more robust. In this baseline, we replace the tracking module with

optical flow tracking. Unlike SORT, the optical flow tracking method will re-initialize

target id every k frame. In our case, we choose k = 200.
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Table B.3: Performance of Corn Stalk Localization (ϵ1: Metric Error, ϵ2: Centroid
Re-Projection Error)

Conventional field Organic field
ϵ1 (cm) ϵ2 ϵ1 (cm) ϵ2

our approach 1.8 5.6 3.5 10.4
corridor prediction 8.5 19.3 9.7 27.8
front-view SLAM 2.9 8.2 6.2 13.3
side-view SLAM 4.5 16.8 7.1 15.5
RANSAC plane fitting 3.7 9.5 9.3 24.2
optical flow tracking 3.3 11.7 4.6 17.9

B.4.4 Results

We fine-tune Faster R-CNN for 100 epochs using the COCO-pretrained weight., and

Table B.2 shows evaluation results for each field. It tracks objects at ≈ 11 FPS on a

laptop (Intel i7-8850H, Quadro P3200, and 32GB RAM). The organic field case has

higher Average Precision (AP) values since about 60% of the training dataset is from

organic fields. AP50 (AP at IoU=.50) has the highest accuracy for both cases, and it

is because irregular shapes of the corn tend to have relatively low IoU values for many

detections while they are still detected as corn.

We compute the metric localization accuracy by comparing predicted target posi-

tions against the manually measured distance between corn stalks. We also evaluate

the tracking variance through the re-projection error of the centroid. In Table B.3 we

summarize the metric error ϵ1 and centroid re-projection error ϵ2 using the data from

both conventional field and the more challenging organic field.

Our method outperforms all the baseline methods, which demonstrates its accuracy

and robustness. As a comparison, the corridor prediction method shows fragile estima-

tions of dp. Due to the challenge of accurate estimation for v⃗l and projective geometry,

the error of dp is significantly impacted by the angular error of the vanishing line in the

front view. As for the view selection in SLAM, we notice that the front-view SLAM

achieves comparable accuracy with our method during a windless day in the conventional

field. However, in general, the comparison between our ROW SLAM and front/side view

SLAM shows that the static features are critical for accurate under-canopy localization
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in the corn rows. For the RANSAC plane fitting method, the performance drop indi-

cates the challenge in directly observing the corn stalk plane from a single view. Lastly,

we observe greater centroid position drift in image plane with optical flow tracking than

SORT, which affects the localization accuracy and variance, proving the importance of

robust visual tracking.

B.5 Conclusions

This paper presents our effort to address the under-canopy corn stalk detection and

localization problem within narrow corn rows by proposing ROW SLAM and a multi-

view camera system mounted on a ground vehicle. ROW SLAM combines existing

algorithms (i.e., object tracking, SLAM, SfM) and applies several geometric methods

to accurately estimate the three planes that bound the row as well as individual plants.

Our results demonstrate ROW SLAM yields an accurate map containing corn stalk

positions and their IDs where existing SLAM algorithms fail. Future work will add an

end-effector to our existing system to remove weeds physically. Furthermore, since the

current approach suffers from drift over the long run, we are developing our algorithm

to minimize the drift by using corn stalks as landmarks with an offline map.



Appendix C

Semantic Mapping with

Confidence Scores through

Metric Embeddings and Gaussian

Process Classification

Recent advances in robotic mapping enable robots to use both semantic and geometric

understanding of their surroundings to perform complex tasks. Current methods are

optimized for reconstruction quality, but they do not provide a measure of how certain

they are of their outputs. Therefore, algorithms that use these maps do not have a way

of assessing how much they can trust the outputs. We present a mapping approach

that unifies semantic information and shape completion inferred from RGBD images

and computes confidence scores for its predictions. We use a Gaussian Process (GP)

classification model to merge confidence scores (if available) for the given information.

The details of the proposed method and results are presented in the following sections.

C.1 Related Work

Many researchers have studied robotic mapping [296] over several decades. Seminal

techniques such as occupancy grid-based representations [297, 298, 299], Simultaneous

208
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(a) RGB Image (b) Semantic Segmentation

(c) Shape Completion (d) Uncertainty Evaluation

Figure C.1: An example scenario of real-world experiments: (a) An RGB image only provides
a partial view of the scene, (b) Semantic labels for observed objects, (c) Predicted complete
shapes (white color), (d) Complete shapes are filtered with confidence scores. Predictions from
(c) are colored in gray/black, and uncertain parts of the complete shapes are marked with blue
spheres.

Localization And Mapping (SLAM) [300] have been introduced in the last few decades.

Geometric maps resulting from such methods allow robots to navigate their environ-

ments accurately, but some early works [297, 298] use a fixed grid size. However, memory

consumption from such methods becomes a bottleneck when robots need finer resolu-

tion maps or are deployed in large-scale environments. Hornung et al. [299] introduced

Octomap which uses an Octree data structure and voxel representation to address these

issues. Other representations have also been explored to address the memory bottle-

neck. Newcombe et al. [301] proposed KinectFusion which uses a Truncated Signed
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Distance Field (TSDF) representation to build a map as a part of their SLAM method.

Henry et al. [302] presented RGB-D Mapping with surfel [303] representation. These

are powerful geometric representations, but do not store semantic information.

To allow robots to perform higher-level tasks (e.g., navigate and grasp a target

object), researchers proposed approaches to create a map containing both semantic and

spatial information of given environments (i.e., semantic mapping [304, 305, 306, 307,

308] and semantic SLAM [309, 310, 311]). Semantic mapping approaches [310, 308]

generally add semantic information on top of the existing mapping framework without

considering the dependency between spatial and semantic information.

Recent advances in deep learning models [69, 312] provide accurate scene under-

standing from an RGB image. Merging the semantic information of images from dif-

ferent views for mapping has not received much attention. The merging process needs

to be robust to both drastic view changes and the lack of generalization of deep neural

network approaches. To handle such challenging cases, it is necessary to consider both

geometric and semantic features during the merging process.

Researchers [313, 314, 315] use Gaussian Process (GP) [316] to model the underly-

ing data correlation for the occupancy mapping problem. They formulate occupancy

mapping as a regression problem and infer a map with GP. Their results [314, 315] show

better mapping performance with GP than standard occupancy mapping [317], which

assumes independence between neighboring cells. The success of GP in occupancy map-

ping motivated several efforts to apply it for semantic mapping. Unlike GP regression,

GP multi-class classification requires approximate techniques for computing the latent

variables’ posterior distribution [318]. This is one of the challenges for adopting GP

classification, and researchers reformulate the multi-class problem as multiple binary

classifiers [319] or regression problem [320, 321].

Recently, there has been increasing interest [322, 323, 324] in applying a probabilis-

tic approach to merge semantic information for mapping. Bowman et al. [322] associate

metric and semantic class probability to formulate an optimization problem for SLAM.

Doherty et al. [323, 324] considers uncertainty when fusing semantic and geometric infor-

mation. For these approaches, uncertainty is provided with information from different

sources. In addition, they are tested with large-scale and long-trajectory datasets (e.g.,

KITTI [325]), which have relatively similar camera view angles across frames.
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Figure C.2: Proposed Pipeline with an example scenario: our pipeline takes RGBD images
and predicts objects’ complete shapes with relevant confidence scores. Each component of
the pipeline (segmentation, metric embedding, semantic map, GP model, shape completion,
prediction evaluation) is presented with example results. The predicted mug pointclouds are
colored in black. The predicted points with lower confidence scores than the desired confidence
score are marked in blue.

In our approach, we address how to evaluate the uncertainty of predictions with

a metric GP model. Additionally, we merge information from multiple sources using

the uncertainty and present combined information with its uncertainty. Furthermore,

we focus on mapping environments for robotic arms. Such environments are usually

small-scale and may have a limited number of views due to physical constraints (e.g.,

collision, space, etc.).

C.2 Methodology

Our proposed pipeline consists of four main components: Semantic Map module, Shape

Completion module, Metric Embedding neural network module, and Gaussian Process

(GP) Inference module. The pipeline takes RGBD images as inputs (Fig. C.2) and

makes predictions for semantic labels and shape completion from each view. The confi-

dence scores for semantic labels are given by the Mask R-CNN, and the ones for shape

completion are computed by the metric GP model. The outputs from the pipeline have

predictions for unseen parts of the objects, their confidence scores, and semantic la-

bels. The final confidence scores are used to filter predictions, and the filtered point
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Table C.1: Attributes stored in each voxel of a semantic map

No. Attribute

1 x, y, z

2 R, G, B

3 Semantic Class (Mode of the histogram)

4 Confidence Score

5 Object ID

can be used to improve the map. In each section below, we discuss the details of each

component.

C.2.1 Semantic Map

We design a semantic map module to extract geometric information from the inputs

(RGBD images) and maintain relevant semantic information such as object category,

instance ID, and a confidence score (Table C.1). We select Octomap [299] as our starting

point to build the module since it is efficient and flexible due to Octree data structure.

From the inputs, RGB images are used by Segmentation Network (MaskRCNN [326]) to

predict instance segmentation for each pixel of the RGB images and obtain confidence

scores of the prediction. By combining the segmentation outputs and depth images, we

obtain segmented pointclouds. The pointclouds are then fed to: 1) Semantic mapping

module, and 2) Metric embedding network (refer to Section C.2.3).

While our main focus is on the uncertainty evaluation of predictions, we develop a

basic tracker for a semantic map to aid semantic information retrieval. With the tracker,

the semantic map can maintain consistent object IDs over observed objects unless they

are heavily cluttered. This is useful functionality to recover the objects’ semantic in-

formation if a robot’s motion causes drastic camera view changes (e.g., no overlapping

observations between two sequential views). Object tracking is a well-studied problem.

Existing image-based object trackers [327] generally rely on overlapping information

between different views, and they lose tracking information if the views do not share

any visual cue. We propose a 3D geometry-based tracker to handle this issue. When we

observe an object from each view, we calculate a centroid of the object’s pointclouds.
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Figure C.3: A semantic map of the example scene introduced in Fig. C.1a. Each object’s seman-
tic labels are represented with different colors, and object trackers (red spheres) are visualized
with their IDs.

We then use the Euclidean distance between the new centroid and existing centroids to

update the set of centroids (i.e., delete, append, and modify centroids). We then assign

an object ID to each centroid in the set and store this information in our semantic map

along with the semantic information in each voxel. In addition, we maintain a histogram

for each semantic class in the voxel map to address temporary false prediction caused

by a misclassification or noise from a camera.

The functionalities introduced above enable us to query the information at the object

level from a semantic map (Fig. C.3). The information includes semantic label, confi-

dence score, and object ID for every voxel belonging to any observed object. Although

a semantic map contains information about the observed pointclouds, it cannot reason

any unseen parts of the objects. To address such limits, we use a shape completion

module and predict unseen parts of the objects.

C.2.2 Shape Completion

Shape completion is a task to predict the shape of a given object when only partial

observations are available for the object. It has gained increasing attention in recent

years [328]. However, most of the previous studies focus on predicting an object’s shape

in an object frame. This object frame-based shape completion requires an additional

pose estimation of the object for robot manipulation. This is an issue when an object’s
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Figure C.4: Our metric learning method: It takes pointclouds from partial views as inputs (red)
and outputs learned metric embeddings (blue).

pose is not available. To avoid this issue, we choose CenterSnap [329] to complete an

object’s shape in a camera frame, which can then be transformed to the world frame

with a known robot pose. The outputs of this network are the 3D shape reconstruction

for all the objects in the current scene and their categorical 6 degree-of-freedom poses

and size estimates. The network is trained on the NOCS dataset [330] that contains

six object classes. The input to the network is an RGB and depth image. The output

is shape completed pointclouds and bounding boxes in the camera frame. Using the

camera extrinsics previously calculated via the robot, we transform these into the world

frame, which is defined at the base of the robot arm. While this module can predict

unseen parts of objects, a way to evaluate each predicted point does not yet exist. To

fill such gap, we introduce metric embedding for a GP classification model.

C.2.3 Metric Embedding

Embeddings refer to intermediate results that we can obtain from neural networks be-

fore they make predictions at the last layer. The intermediate results are often called

embeddings since they embed some information; semantics and geometric information

in our case. To obtain such embeddings for the segmented pointclouds ((x, y, z) co-

ordinates), we use two neural networks sequentially (Fig. C.4): 1) DGCNN [331], and

2) Multilayer Perceptron (MLP) network. First, we feed segmented pointclouds to

DGCNN and take the 7D embeddings from the last dense layer of DGCNN. Next,
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Table C.2: Two types of inputs for the GP model

Type Train X Train Y Test X

Classic GP x, y, z Semantic Label x, y, z

Metric GP Metric Embed-
ding

Semantic Label x, y, z

we pass the embeddings to the MLP network that we designed to enforce embed-

dings to be in a unit-sphere metric space. The MLP consists of four dense layers

((7 × 250), (250 × 100), (100 × 50), (50 × 3)), and is trained with A-Softmax loss [220].

This loss forces the MLP to generate embeddings on a unit-sphere surface upon training

the network. As a result, we yield 3D metric embeddings for segmented pointclouds

from this step. Free space does not have any geometry, so its embedding cannot be

learned. Therefore, we assign a zero embedding to free space explicitly. To make ob-

jects’ embeddings equidistant from the free space embedding, we constrain them to lie

on a unit-sphere.

C.2.4 Gaussian Process

With the metric embeddings of the segmented pointclouds, we select the GP-based

model for the prediction since GP [316] is well-known for its ability to capture the

underlying structure from training data points and use the structure to make predictions

for test data points. Particularly, we choose the Dirichlet GP classification model [332]

to make predictions from our embeddings. This model solves a classification problem

by transforming class labels with Dirichlet distribution. With the metric embedding as

training points, we call this GP model metric GP. However, its computational cost often

becomes a bottleneck as the size of the data increases. A few libraries [333, 334, 335] have

been introduced to alleviate this problem by optimizing the framework. Among them,

we use GPytorch [333], an open-source library that allows us to run fast GP inference

on GPUs using Pytorch [252] and CUDA. In addition, it provides recent advanced GP

models.

With the selected GP classification model, we present two approaches with two

types of inputs (Table C.2): 1) Classic GP, and 2) Metric GP. For the classic GP, we

use pointclouds (x, y, z coordinates of each point) to construct the covariance matrices
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with a kernel. This approach relies on the geometric distances between training and

test points to make inferences, which may not be able to exploit underlying semantic

information from the training data.

The GP model can reason underlying data features better if the training points

embeds semantic information. This motivated us to construct the GP model using

training points obtained in a learning metric embedding space, which is a unit-sphere

metric space in our case.

Once we obtain the metric embeddings for the training points, we append em-

beddings to relevant points. As a result, the training data becomes 6-dimensional

(x, y, z, e1, e2, e3). Eq. C.1 shows the covariance matrix K for the GP model.

K = (K(X,X) K(X,X∗)T∗
K(X,X∗) K(X∗, X∗)

) (C.1)

where X is the training points, and X∗ is the test points.

For our GP model training, we construct the K(X,X) matrix using the metric

embeddings (e1, e2, e3) of the training points. For the inference, we calculate K(X,X∗)
with 3D coordinates of both training and test points. Due to the fact we do not have any

prior information (i.e., colors, cluster shapes) about the test points, which are unknown

except for their coordinates, we use the 3D coordinates of the training points to find the

correlation between the training and test points via K(X,X∗). Similarly, we compute

K(X∗, X∗) with 3D coordinates of the test points.

When the GP model makes inferences, it provides variance (σ) along with predic-

tions. We use the variance to output the raw confidence score (s in Eq. C.2) of each

prediction by measuring the variance reduction. Then we normalize s to obtain the

score s̃ ranging between 0 and 1.

s =
1 − σ

1 − σmin
(C.2)

s̃ =
s − smin

smax − smin
(C.3)

To compute our final prediction confidence scores for shape completion parts and

their semantics, we multiply the normalized confidence score (Eq. C.3) by the confidence
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score given by the segmenter.

C.3 Experiments and Results

C.3.1 System Overview

We set up our experiments in both simulation and real-world settings to evaluate our

approach both quantitatively and qualitatively. Our simulator is built using Pybul-

let [336]. For real experiments, we evaluate our approach with a Panda Arm robot,

which has 7 degrees-of-freedom. We mount a Realsense D-435 (RGBD) camera on the

wrist of the robot. For both the simulation and real setup, we use Rviz to visualize the

outputs from our algorithms. We use open source libraries in ROS2 Foxy with Ubuntu

20.04 OS. The underlying communication layer is ROS2, allows for seamless communi-

cation between the robot (both in simulation and real), our algorithm, and visualization

modules.

C.3.2 Evaluation Metrics

To evaluate our approach, we build a confusion matrix to evaluate the prediction accu-

racy. The matrix has four elements, and they are defined as follows for our experiments:

• True Positive (TP): Points predicted by GP as part of the object that lie on the

ground truth object mesh.

• True Negative (TN): Points predicted by GP as free space that doe not lie on the

ground truth object mesh.

• False Positive (FP): Points predicted by GP as part of the object that do not lie

on the ground truth object mesh.

• False Negative (FN): Points predicted by GP as free space but lie on the ground

truth object mesh.
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(a) Simulation (b) Visualization

Figure C.5: An example scenario of our simulation experiments: (a) A mug on the table rendered
with Pybullet, (b) Visualization results in Rviz: It shows the mug pointclouds and semantic map
with its object tracker.

C.3.3 Baselines

Due to sensor noise and lighting conditions, it is generally infeasible to obtain ground

truth pointclouds for objects in a real-world experiment setup. We ran our baseline ex-

periments in simulation to evaluate our method with ground truth pointclouds sampled

from known object meshes as shown in Fig. C.5. For the simulation experiments, we

use two types of objects (e.g., bowl and mug) while for the real robot evaluation we

added multiple objects in the scene including a bottle and a can.

We designed our experiments to compare the performance of our proposed pipeline

where we apply the metric GP model and the classic GP model. The metric GP model

uses metric embeddings of the observed pointclouds to train the model, and the classic

GP takes the pointclouds without any further processing. Additionally, the pipeline is

tested with and without the shape completion (SC) module for both the GP models

to see if the performance of each GP model relies on the shape completion module’s

presence. For the case without the SC module, we sample test points for inference

randomly in the object bounding box. For the other case, we use points from the SC

module as test points. In total, we ran four runs for a mug and bowl, respectively.
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Table C.3: The results of baseline experiments for mug and bowl in Simulation

TP TN FP FN Acc.

Mug

Classic GP with SC 0.066 0.793 0.125 0.016 0.345
Metric GP with SC (Ours) 0.161 0.711 0.083 0.045 0.659
Classic GP without SC 0.356 0.139 0.414 0.091 0.462
Metric GP without SC 0.404 0.161 0.345 0.090 0.539

TP TN FP FN Acc.

Bowl

Classic GP with SC 0.265 0.024 0.598 0.113 0.307
Metric GP with SC (Ours) 0.406 0.012 0.502 0.080 0.447
Classic GP without SC 0.246 0.206 0.477 0.071 0.340
Metric GP without SC 0.249 0.244 0.445 0.062 0.358

C.3.4 Results

For our experiments, we trained the Mask R-CNN with the NOCS real and camera

datasets with 10 epochs on NVIDIA 1080 TI GPU. Additionally, we trained our metric

embedding model with 30, 000 scenes where each scene has 2, 048 data points on NVIDIA

3090 GPU. Pretrained weights are used for the shape completion network(CenterSnap).

Lastly, we built both GP models with 3, 600 training points and queried 1, 000 test

points from them using Matern Kernel.

The results of the baseline are shown in Table C.3. The confusion matrix results

for each case are normalized as all evaluations are done on 1000 points. The results

demonstrate that our method outperforms all the other baseline experiments for both

mug and bowl classes. We noticed that the shape completion (SC) module improved the

performance of our method regardless of the choice of the GP model. Additionally, the

mug class shows higher accuracy in general than the bowl class. The mug model in our

simulation has a more similar shape to the mug model in the NOCS dataset compared

to the bowl case.

We also qualitatively evaluate our proposed approach in a real-world environment.

Fig. C.6 shows the results, where the blue-colored points represent the points with lower

confidence scores than the threshold confidence score. In other words, any point that

has a lower confidence score than the desired confidence score is colored blue. From the

observed scene, our approach predicted shape completion and semantic information.

Based on the observed prior (Fig. C.6a), each point in the prediction has different
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(a) An RGB Image
(b) The 0-th percentile
confidence score

(c) The 25-th per-
centile confidence score

(d) The 50-th per-
centile confidence score

Figure C.6: An example of real-world evaluation on the robotic platform. The original predicted
shape completion points are colored in black. The predicted points with lower confidence scores
than the desired confidence score are marked in blue. As the desired confidence score increases
from (b) to (d), the number of uncertain points are increasing visually (e.g. the size of the blue
region grows).

confidence scores. The complete shape points are then filtered with the n−th percentile

confidence scores (i.e., threshold confidence score) in Fig. C.6b-C.6d. As the threshold

confidence becomes higher, we observed that the number of uncertain predicted points

is increasing. Observed points from the RGB image tend to be more certain points.

Also, the bottle class has more uncertain points compared to other classes since its

predicted complete shape is quite different from the shape of the bottle we used for the

experiment. This shows the difference between the object model predicted from the SC

module and the observed model can degrade the performance of our approach. As our

qualitative result shows, the capability to filter predictions with confidence scores will

give a robot to adjust the threshold confidence score based on its task for mapping its

environment. flexibility to a robot to decide how much predicted information it will use

for mapping. In other words, the robot can use higher confidence scores to filter the

prediction with higher-risk tasks while lower confidence scores can be used for lower-risk

tasks.

C.4 Conclusions

This paper presents our novel mapping method that unifies semantic information and

shape completion predicted from partial-view RGBD images and calculates confidence

scores for its predictions. Our metric Gaussian Process (GP) classification model merges

confidence scores (if available) for the given information. A novel aspect of our method
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is to transfer sensor measurements to a learned metric space for training the GP model.

From this metric GP model, we can measure the uncertainty of the unified information

and make predictions more accurately than a classic GP model. The results demonstrate

that our approach successfully merges the given information (e.g., semantic information

and shape completion) from partial views and computes their confidence scores. Future

work will include building a grasping algorithm that relies on our modules and demon-

strate its robustness to occlusions in the scene. In the long term, we plan to focus on

generalizing our approach so that it can incorporate a larger number of sensor inputs.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Part I: Visual Perception in Data-Scarce and Visually Challenging Underwater Environments
	Object Detection for Underwater Trash
	Related Work
	Data Source and Training Set Construction
	The Trash-ICRA19 Dataset
	Data Model
	Evaluation Data

	Network Architectures
	YOLOv2
	Tiny-YOLO
	Faster RCNN with Inception v2
	Single Shot MultiBox Detector (SSD) with MobileNet v2

	Training
	Evaluation
	Metrics
	Hardware

	Results
	Quantitative Results
	Qualitative Results

	Conclusion

	A Semantically-Segmented Dataset towards Visual Detection of Underwater Debris
	Motivation, Problem Statement, and Related Work
	The TrashCan Dataset
	Baseline Experiments
	Results
	Conclusion

	A Generative Approach for Data Augmentation
	Related Work
	Methodology
	Data Collection
	Variational Autoencoder
	Binary Classifier
	Multi-class Classifier

	Experiments and Results
	Data Collection
	Image Generation
	Binary Classification
	Multi-class Classification

	Conclusion

	Image Blending for Underwater Robotic Detection
	Related Work
	Methodology
	Experiments
	Data Collection
	Image Blending and Data Generation
	Object Detection and Instance Segmentation
	Robot Setup

	Results
	Conclusions

	Part II: Robotic Exploration and Localization for AUVs
	Stereo Visual Obstacle Avoidance using Semantic Information
	Related Work
	Instance Segmentation
	Obstacle Avoidance

	Methodology
	Information Fusion using a Stereo Camera
	Obstacle Avoidance

	Experiments and Results
	Simulated Terrestrial Trials
	Simulated Underwater Trials
	Results

	Conclusions

	Depth-based Monte Carlo Localization for AUVs
	Related Work
	Problem Formulation
	Motion Model
	Measurement Model

	Methodology
	Extended Kalman Filter
	Unscented Kalman Filter
	Particle Filter
	Marginalized Particle Filter

	Simulation Development and Experimental Setup
	Bathymetry Data Collection
	Robotic Simulation Development
	Simulation Settings

	Results and Discussion
	Linear Motion Case
	Mixed Motion Case
	Discussion

	Conclusion

	Part III: Algorithms for effective human-robot collaboration
	Autonomous Diver-Relative Operator Configuration for Human-robot Collaboration
	Related Work
	Autonomous Diver-relative Operator Configuration
	Desired Behavior
	The ADROC Algorithm

	Methodology
	Diver Perception Modules
	Diver-Relative Position Estimation
	Approach Controller

	Experimentation
	Experimental Platforms
	Pool Experiments
	Results
	ADROC Limitation Experiments

	Conclusion

	Diver Identification for Human-robot Collaborations
	Related Work
	DiverFace: Diver Identification Using Facial Cues
	Offline Module
	Online Module

	Experimental Setup and Evaluation
	Dataset
	Evaluation Criteria
	Model Selection and Evaluation Results
	Practical Feasibility

	DiverID: Diver Identification Using Anthropometric Data Ratios
	Diver Identification Algorithm
	Diver Identification Framework

	Experiments
	UDI Dataset
	Setup
	Experimental Scenarios

	Results
	Offline Framework
	Online Framework
	AUV Trial Failure Cases

	Conclusions

	Part IV: Robotic Systems Development Toward On-board Object Detection
	Robotic Systems Development Toward On-board Object Detection
	Motivation
	LoCO
	System Design
	Software

	HydroEye
	System Design
	Deployment and Usage

	Conclusion

	Conclusion and Future Work
	Summary of Presented Research
	Future Work
	Efficient learning for robotic perception
	Risk-aware semantic mapping
	Physical interaction ability for robots

	Concluding Remarks

	References
	 Appendix A.  Selected Simulation Results from Each Lake
	 Appendix B.  ROW-SLAM: Under-Canopy Cornfield Semantic SLAM
	Related Work
	Problem Formulation
	System Overview
	System Description
	Method Overview
	Corn Stalk Detection
	Corn Stalk Tracking
	Corn Stalk Plane Estimation
	3D Localization

	Experiments and Results
	Data Collection
	Evaluation Metrics
	Baselines
	Results

	Conclusions

	 Appendix C.  Semantic Mapping with Confidence Scores through Metric Embeddings and Gaussian Process Classification
	Related Work
	Methodology
	Semantic Map
	Shape Completion
	Metric Embedding
	Gaussian Process

	Experiments and Results
	System Overview
	Evaluation Metrics
	Baselines
	Results

	Conclusions


