
Closing the Loop Between Multimodal SLAM and 3D Gaussian
Splatting for Large-Scale Underwater Reconstruction

Daniel Yang∗1,2, Jungseok Hong∗1, Yogesh Girdhar2 John J. Leonard1

Abstract— 3D Gaussian splatting is a powerful visual repre-
sentation, providing high quality 3D scene reconstruction, but
is crucially dependent on accurate estimation of camera poses,
typically from computationally intensive process like structure
from motion unsuitable for field robot applications. However
in these domains, multimodal sensor data including depth,
DVL, pressure, and monocular images is available and suitable
for pose-graph optimization based SLAM methods that can
estimate the vehicle’s trajectory and provide an estimate of our
needed camera poses. We initialize a 3DGS model using noisy
poses and images observing a known landmark. Incrementally,
we refine these camera poses and use our scene representation
to track new image observations and continue reconstructing
the scene. As our scene is further optimized, we can refine
previously observed images and feed such poses back into the
pose-graph. We show a COLMAP-free 3D reconstruction of a
20 m by 20 m underwater reef with complex geometry as well
as more accurate global pose estimation of our underwater
vehicle during its 800 m trajectory surveying the reef.

I. INTRODUCTION

Recent advances in autonomous underwater vehicles
(AUVs) and underwater mapping have enabled the mapping
of challenging underwater environments. However, essential
scientific applications, such as coral reef monitoring and
large-scale spatiotemporal environmental surveys, are still
constrained. These tasks require dense, geometrically consis-
tent scene representations over long trajectories, where the
quality of dense reconstruction depends on the input images
and the accuracy of camera pose estimation. Achieving such
reconstructions for underwater scenes remains challenging
due to degraded visual conditions (e.g., light attenuation, tur-
bidity, color distortion, and low-texture scenes) and limited
sensing capabilities, resulting in persistent inaccuracies in
pose estimation.

To estimate poses in batch, structure-from-motion and
multi-view stereo methods have been used, but they require
substantial computational resources. Visual simultaneous lo-
calization and mapping (SLAM) methods can be used to
estimate poses incrementally and build maps in real time,
but they are fundamentally unreliable underwater due to the
challenges mentioned above. To address this issue, state-of-
the-art underwater SLAM systems integrate multimodal sen-
sors, combining inertial, velocity, and depth measurements
with visual and/or acoustic cues in pose-graph optimization
frameworks. While these systems effectively estimate vehicle
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trajectories over long distances, the resulting maps are typi-
cally sparse and optimized for navigation rather than dense
scene representation. Consequently, existing systems are
generally inadequate for downstream scientific analysis that
requires detailed information about the target environments.
This fundamental mismatch between existing systems and
scalable, dense reconstruction remains a key bottleneck for
using maps across a wide range of tasks.

Recently, 3D Gaussian Splatting (3DGS) [1] has emerged
as an efficient and differentiable representation that produces
high-fidelity, dense reconstructions while allowing for pose
refinement via gradient-based optimization. This advance-
ment has motivated the development of 3DGS-based SLAM
systems [2]–[5]. However, these systems are primarily tested
in terrestrial environments and rely on reliable visual charac-
teristics or RGB-D sensing, assumptions that do not hold in
underwater contexts where sensor measurements are noisier.

We address this gap by tightly coupling multimodal
pose-graph SLAM with incremental updates to a 3DGS
model. Rather than treating dense reconstruction as a post-
processing step or relying on batch-based structure-from-
motion, we propose a closed loop between pose estimation
from SLAM and scene representation. Starting from regions
of low pose uncertainty near a known landmark, we in-
crementally expand the dense scene representation. As the
3DGS model improves, it is used to refine camera poses via
differentiable rendering, and these refined poses are added
to the pose graph to improve global trajectory estimation.

This bidirectional refinement allows pose estimation and
dense reconstruction to mutually improve each other over
extended trajectories, even when initial pose estimates are
noisy and input images are distorted. In contrast to previous
3DGS-based SLAM systems, our approach explicitly lever-
ages the pattern of underwater surveys and the complemen-
tary strengths of multimodal SLAM and differentiable scene
representations. The resulting pipeline is bundle-adjustment-
free, incremental, and capable of dense reconstruction at
scales relevant to real-world underwater surveys, spanning
hundreds of meters while simultaneously improving global
pose accuracy.

Our contributions are as follows:
1) Framework for integrating 3D Gaussian Splatting with

pose-graph SLAM to achieve both increased 3D re-
construction quality and less error in pose estimation,
suitable for field robotics applications.

2) less time to build 3dgs model using slam pose estima-
tion

3) real-world coral reef surveys spanning an 800 m vehi-



cle trajectory and reconstructing a 20 m × 20 m reef
area with complex geometry.

4) finetune depth estimation model with synthetic data?

II. RELATED WORKS

A. Bundle Adjustment-free 3D reconstruction

Recent feed-forward 3D models reduce reliance on clas-
sical SfM by predicting point maps directly from pairs of
images, from which camera parameters can be estimated.
DUSt3R [6] introduced a framework for dense per-pixel
3D pointmap regression, enabling end-to-end reconstruc-
tion from arbitrary image pairs without camera calibrations.
Many works build upon DUSt3R to improve dense feature
matching [7] and introduce strategies for handling multiple
views [8] or a stream of images [9], [10]. Other works like
VGGT [11] utilize feed-forward transformers to simultane-
ously attend to and jointly reason over all input views. These
models rely on learned geometric priors and dense correspon-
dences that can initialize or regularize poses. However, when
texture is scarce and viewpoints are suboptimal (e.g. limited
field of view, minimal overlap) as is common in underwater
scenes, they tend to struggle.

B. Underwater SLAM

Underwater SLAM is substantially more challenging than
terrestrial or aerial SLAM due to degraded visual conditions,
limited sensing bandwidth, and the absence of GPS [12],
[13]. Optical imagery suffers from attenuation, color distor-
tion, turbidity, and low-texture scenes, causing vision-only
and visual-inertial SLAM systems to fail or drift even under
moderate underwater conditions [14]. To achieve robust long-
horizon navigation, underwater SLAM systems therefore
rely on multi-modal sensor fusion, commonly integrating
IMU, DVL, and depth measurements within factor-graph or
pose-graph optimization frameworks [15]. Visual or acoustic
sensing is typically used to detect features and provide
relative pose constraints. Underwater SLAM systems such
as [16] focus on robust trajectory estimation using sparse
map representations (e.g., keyframes). In contrast, recent
works including [17], [18] yield dense maps, but typically
evaluate on relatively short trajectories rather than long-
horizon mapping.

C. Dense SLAM

Dense underwater reconstruction has therefore been dom-
inated by SfM and MVS pipelines, COLMAP [19] and
its commercial equivalent Metashape [20]. These pipelines
provide high-quality models but require computationally
intensive bundle adjustment and are unsuitable for incre-
mental field deployment. Camera pose estimation remains
a key bottleneck for scaling dense reconstruction to large
underwater environments. One recent method [21] eschews
these pipelines for learning based ego-motion estimation
from images [22] to build underwater scene maps, but relies
on masking out most of the scene where water degradation
effects are visible and is limited in the fidelity of its output.

Recent advances in dense scene representations, par-
ticularly radiance field methods like NeRF [23] and 3D
Gaussian Splatting (3DGS) [24], offer new opportunities to
bridge the gap between sparse SLAM and dense reconstruc-
tion. 3D Gaussian Splatting (3DGS) [24] has emerged as
a computationally efficient explicit representation capable
of producing high-fidelity dense geometry and appearance
while supporting differentiable optimization. Several recent
SLAM systems [2]–[5] incorporate 3D Gaussian represen-
tations to jointly optimize camera poses and dense scene
models, demonstrating real-time or near-real-time photo-
realistic reconstruction in terrestrial environments. However,
these methods typically assume strong visual observability,
controlled illumination, or RGB-D sensing, and are not
designed to operate under the degraded visual conditions and
multi-modal sensing constraints characteristic of underwater
domains.

In contrast, this work bridges sparse multimodal under-
water SLAM and dense 3D Gaussian Splatting by closing
the loop between pose-graph optimization and dense scene
reconstruction, enabling bundle-adjustment-free large-scale
underwater reconstruction while achieving reasonable global
vehicle pose estimation.

III. METHOD

A. Problem Formulation

We aim to construct a dense 3D representation model of an
underwater environment by estimating robot poses by fusing
multimodal sensor data. We assumed that an underwater en-
vironment is surveyed by a robot navigating the environment
in a flower-petal pattern with a fixed, known landmark at the
center. Let X = {Xt}Ni=1 denote the sequence of robot poses,
where each pose Xt ∈ SE(3). The sensor measurements Z
include monocular images I = {It}t=t0 from a downward-
facing calibrated camera, linear velocities V = {vt}tNt=t0 ,
vt ∈ R3 from a DVL, angular velocity Ω = {ωt}tNt=t0 ,
ωt ∈ R3 and linear acceleration A = {at}tNt=t0 , at ∈ R3 from
an IMU, and depth measurements D = {dt}tNt=t0 , dt ∈ R
from a pressure sensor. Note that depth here refers to distance
from the sea surface, not depth from the camera sensor.

B. Pose-Graph Optimization for Pose Estimation

We formulate the pose estimation problem as a factor
graph optimization problem, where we estimate the robot’s
state X and landmark L via Maximum a Posteriori (MAP)
inference given sensor measurements Z .

X̂ , L̂ = argmax
X ,L∈SE(3)

p(X ,L | Z). (1)

To ensure scalability to long-duration missions, which are
typically required in underwater survey missions, we first
estimate odometry using an Extended Kalman Filter (EKF)
rather than creating separate factors for each sensor mea-
surement. Prior to odometry estimation, we apply an IMU
complementary filter [25] to preprocess raw IMU measure-
ments, which are typically affected by noise and sensor
bias. This filter employs quaternion decomposition to yield



Fig. 1: overview figure
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Fig. 2: Information obtained from objects and odometry is used for building
a factor graph (Xi: vehicle states; Li: landmark states; θLi, ϕLi, zLi:
bearing, elevation, and ranges to objects; zv , ϕv , ψv : depth, pitch, and roll
of the vehicle; xv , yv , θv : location and yaw of the vehicle).

a stable orientation estimate in real-time. The filtered IMU
data, combined with depth and DVL velocity measurements,
are then fused using an EKF [26] to obtain odometry data.

To build a factor graph, we incorporate prior knowledge
of a static landmark located at the center of the survey site.
We add both odometry and landmark measurement factors
into the graph, each associated with robust noise models
(e.g., Huber) to handle potential outliers. The final pose
trajectory is estimated by solving the factor graph using
Levenberg–Marquardt (LM) optimization.

C. Incremental 3D Gaussian Splatting with Uncertainty-
Aware Pose Refinement

We utilize a 3D Gaussian Splatting (3DGS) representation
within our framework, parameterizing the scene with a set
of isotropic 3D Gaussians and using zero order spherical
harmonics. Thus, each 3D Gaussian has a set of 8 parameters,
consisting of the mean µ ∈ R3, scale S ∈ R1, opacity
o ∈ R1, and color c ∈ R3. This reduced set of parameters
requires less space and simplifies the optimization problem.
Typically, a 3DGS model is trained given a dataset of RGB
images, corresponding poses, and a point cloud to initialize
the 3DGS model, the latter two of which are typically
obtained from structure-from-motion (e.g. COLMAP [19]).
All views of the model are jointly optimized and available
at the start of optimization.

In contrast to this paradigm of precise camera poses and
an accurate, sparse point cloud to initialize the full scene,
our underwater field environment context has much noisier,
sparse estimated data. Camera poses are estimated by fusing
multimodal sensor data while a monocular RGB sensor is
used with a monocular depth estimator (e.g. DepthAny-

thingV2 [27] to generate point clouds to initialize 3D Gaus-
sians. Similarly, our pose-graph incorporating a fixed static
landmark does not have error uniformly distributed across
all poses, with poses near the landmark having much lower
uncertainty than poses further away from the landmark.

Thus, we propose incrementally building the scene rep-
resentation, starting from the region of least noise, near
the landmark, and gradually introducing and optimizing
new observations on the frontier of what has already been
incorporated into the scene. In other words, we are radially
outwardly optimizing the scene representation. Notably, be-
fore incorporating new noisy observations we can refine the
pose estimates by fitting the observation against the model
optimized thus far. Given an 3DGS model of the partial
scene, a new image observation, and a noisy estimate of
the new image pose, we can refine the pose by minimizing
reconstruction error and propagating the gradients back to
the pose as implemented in libraries like gsplat [28]. This
requires visual overlap between the rendered image at the
pre-refinement pose and can fail if the pre-refinement pose
is too far away from the actual pose. As the scene representa-
tion is gradually refined, we interleave this pose refinement
process, hoping that improvements in scene representation
lead to more accurate pose estimation.

D. Iterative, Global Pose Refinement from 3D Gaussian
Splats

Given a 3DGS model that has refined a subset of camera
poses where the scene representation accurately captures the
scene, we can incorporate these refined pose estimates as
factors into our factor graph. These factors not only improve
pose estimation locally around the camera frame but also
much further away from the landmark, as error is mitigated
before it causes the pose to drift significantly. These further
away improved poses can then be used with optimization of
the 3DGS model and enable reconstruction of areas where
previously, there was too much error to be corrected with the
pose refinement process.

IV. EXPERIMENTS

A. Dataset Collection

We evaluate our method on coral reef benthic survey
data collected at two sites in the US Virgin Islands. An
AprilTag [29] is placed at the center of the reef, and we



Fig. 3: overview figure

utilize CUREE [30], a flexible low-cost underwater vehicle
platform, to collect the dataset. CUREE performs a flower-
petal shaped survey, where each petal is 10 m long and has a
sensor suite including a downward facing camera recording
benthic imagery, a Waterlinked DVL A50, an ICM-20602
IMU from a BlueRobotics Navigator, and a BlueRobotics
Bar30 pressure sensor.

B. Evaluation Metrics

C. Comparative Baselines

V. RESULTS

A. Pose Estimation Accuracy

B. 3D Reconstruction Quality

C. Ablations

D. Running time

VI. CONCLUSIONS
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Tektite Yawzi
Method PSNR LPIPS SSIM RMSE (m) PSNR LPIPS SSIM RMSE (m)
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